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A Proofs and the three model speci�cations

A.1 General model: proofs

A.1.1 Overlapping ownership and �

Common ownership Consider an industry with n �rms and I � n investors; we let i and

j index (respectively) investors and �rms. The share of �rm j owned by investor i is �ij , and

the parameter �ij captures the extent of i�s control over �rm j. The total (portfolio) pro�t of

investor i is �i =
P
k �ik�k, where �k are the pro�ts of portfolio �rm k. The manager of �rm j

takes into account shareholders�incentives (through the control weights �ij) and maximizes a

weighted average of the shareholders�portfolio pro�ts:

IX
i=1

�ij�
i =

 
IX
i=1

�ij�ij

!
�j +

IX
i=1

�ij

nX
k 6=j

�ik�k:

It is immediate dividing by
PI
i=1 �ij�ij that the objective of the manager can be rewritten as

�j = �j +
nX
k 6=j

�jk�k, where �jk �
PI
i=1 �ij�ikPI
i=1 �ij�ij

:

The parameter �jk is the relative weight that the manager of �rm j places on the pro�t of

�rm k in relation to the own pro�t (of �rm j) and re�ects the control of �rm j by investors

with �nancial interests in �rms j and k. For the manager of �rm j to put weight on the interest

of investor i we need �ij�ik > 0: investor i has to have a stake in �rm k (�ik > 0) and some

control over �rm j (�ij > 0). The weight �jk is larger the more �rm j is controlled (high �ij)

by investors with high stakes in �rm k (high �ik) and the less concentrated the ownership and

control of �rm j (low denominator
PI
i=1 �ij�ij). The numerator

PI
i=1 �ij�ik is a measure of

the ownership concentration and control of �rm k. As the ratio �jk increases, the in�uence of

the common owners of �rm k over the manager of �rm j increases.

We next discuss the cases of silent �nancial interests and proportional control. In both cases

we assume that each �rm has a reference shareholder and each investor acquires a share � of the

�rms which are not under his control. The reference shareholder keeps an interest 1� (I � 1)�

in his �rm and we assume that �I < 1 so that 1� (I � 1)� > �.

Silent Financial Interest (SFI). In this case, each owner (i.e., the majority or dominant

shareholder) i retains full control of the acquiring �rm and is entitled to a share � of the acquired

�rms�pro�ts� but exerts no in�uence over the latter�s decisions. Then �SFI = �= [1� (I � 1)�]

is just the ratio of the share on an acquired �rm k (�ik = � in k, numerator of �jk) over
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the share in the own �rm j (�ij�ij = 1 � (I � 1)�, denominator of �jk).1 The result is that

�jk is increasing in the number of investors I since when I increases investor i has less of a

�nancial interest in his own �rm (and when � increases then on a double account �jk increases).

The driving force is that �jk increases as the size of the interest of undiversi�ed shareholders

diminishes. The upper bound of common-ownership is � = 1=I, in which case �SFI = 1.

Proportional Control (PC). Under proportional control, the �rm�s manager accounts for

shareholders�own-�rm interests in other �rms in proportion to their respective stakes �ij = �ij .

In this case we have that �jk =
�PI

i=1 �ij�ik

�
=
�PI

i=1 �ij
2
�
; where the denominator is the

HHI on ownership shares of �rm j and under symmetry �PC equals

�
2[1� (I � 1)�]�+ (I � 2)�2

	
=
�
[1� (I � 1)�]2 + (I � 1)�2

	
:2

As with SFI, here �PC = 1 when � = 1=I. For � < 1=I, then �PC is increasing in both I and �.

The e¤ects are more complex with proportional control but the relative weight of the pro�t of k

over j ends up being monotone in the number of investors I and �. Both the numerator and

denominator of �PC decrease with I but the denominator decreases more indicating that the

ownership concentration of the �rm�s manager decreases by more than the one of other �rms

when I increases, inducing the manager to put a lower weight on the pro�ts of other �rms. The

driving force again is the decline in the interest of the undiversi�ed stake of reference investors

1� (I � 1)� as I or � increase.

Cross-ownership We assume here that each of the n �rms may acquire their rivals�stock

in the form of investments with no control rights. The pro�t of �rm j is given by �j =

�j +
P
k 6=j �jk�k, where �jk is the �rm j�s ownership stake in �rm k. One can derive the pro�t

for each �rm by denoting � � (�1; :::; �n)0 and � � (�1; :::; �n)0, and solving the matrix equation:

� = �+A�, where A is the n�n matrix with the ownership stakes with 0�s in the diagonal and

�jk o¤-diagonal. Thus, � = ��, where � = (I�A)�1 is the inverse of the Leontief matrix; its

coe¢ cients �jk represent the e¤ective or imputed stake in �rm k�s pro�ts received by a "real"

equity holder with a 1% direct stake in �rm j. We examine the symmetric case: �jk = �kj � �

for all j 6= k, and �jj = 0 for all j. The formula for the coe¢ cients of matrix � when stakes are

1 If i owns and controls j, then (i) �ij = 1 and �ik = 0 for k 6= j; �ij = 1 � (I � 1)� and �ik = � for k 6= j,
and the manager of �rm j maximizes

P
k �ik�k.

2Suppose that each investor acquires a share � of those other �rms. To compute �jk for a given k 6= j, note
that if i is the majority shareholder of j then �ij = 1� (I�1)� and �ik = �; if i0 is the majority shareholder of k,
then �i0j = � and i0 receives an own-�rm pro�t share of �i0k = 1 � (I � 1)�. Finally, there are I � 2 investors
who are minority shareholders of j and k; for these investors, the product of their pro�t shares (and control) is
equal to �2. This explains the numerator of �jk. The denominator follows similarly and we obtain the expression
for �PC :
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symmetric is, for � < 1=(n� 1), �jj = 1�(n�2)�
[1�(n�1)�](�+1) and �jk =

�
[1�(n�1)�](�+1) for all j and all

j 6= k.3 Hence, the pro�t of �rm j with symmetric stakes is given by

�j =
1� (n� 2)�

[1� (n� 1)�] (�+ 1)�j +
�

[1� (n� 1)�] (�+ 1)
X
k 6=j

�k:

Maximizing the above expression is equivalent to maximizing �j+�
P
k 6=j �k, where � = �CO �

�= [1� (n� 2)�].

Comparative statics. The results for �SFI and �CO follow by inspection. Regarding the

case of proportional control, we have that

@�PC

@I
=

�2
�
�2I2 � 4�I + 3

�
(�2I2 � �2I � 2�I + 2�+ 1)2

;
@�PC

@�
=

2 (1� �I)
(�2I2 � �2I � 2�I + 2�+ 1)2

.

Therefore, @�PC=@I > 0 i¤ �PC(�) = �2
�
�2I2 � 4�I + 3

�
> 0 for any I � 2 and � < 1=I.

Solving for �PC(�) = 0, the quadratic (�
2I2�4�I+3) gives the solutions � = 1=I and � = 3=I.

For � 2 (0; 1=I), (�2I2 � 4�I + 3) > 0 and �2 > 0 and, thus, �PC(�) > 0.

By di¤erentiating with respect to �, we obtain �0PC = 4�
�
�2I2 � 3�I + 3=2

�
> 0 for � 2

(0; 1=I). Therefore, �PC > 0 for � 2 (0; 1=I) since �PC(0) = 0.

Clearly, @�PC=@� > 0 for � < 1=I.

Ranking. Let us compare �SFI and �PC ; after simplifying we obtain

�SFI � �PC = �(1� �I)
� [1� �(I � 1)] [1 + I(I � 1)�2 � 2(I � 1)�] .

For � < 1=I, we have �SFI < �PC i¤ �SP (�) = 1 + I(I � 1)�2 � 2(I � 1)� > 0. Note that

�SP (0) = 1 > 0, furthermore �0SP (�) = 2I(I � 1)� � 2(I � 1) = 2(I � 1)(I� � 1) < 0. Since

�00SP (�) = 2(I�1)I > 0, the global minimum is located at � = 1=I, at which �SP (1=I) = 1=I > 0.

Thus, �SP (�) > 0 and as a result �
SFI < �PC .

Finally, for n = I

�SFI � �CO = �2

[�1 + (I � 2)�] [�1 + (I � 1)�] ,

thus �SFI � �CO > 0 for � < 1=I, hence �PC > �SFI > �CO.
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Table 4: Summary of Basic Expressions at the Symmetric Equilibrium of the Simultaneous
Game

Second-Order Conditions

@qiqi�i = (@2�i=@q
2
i )
��
q�;x�

= f 0(Q�)(2 + ��=n) < 0

@xixi�i = (@2�i=@x
2
i )
��
q�;x�

= �(c00(Bx�)~�q� + �00(x�)) < 0

(@qiqi�i) (@xixi�i)� (@xiqi�i)
2 = �f 0(Q�)(2 + ��=n)[c00(Bx�)(Q�=n)~�+ �00(x�)]� c0(Bx�)2 > 0

Cross-Derivatives

@qiqj�i = (@2�i=@qi@qj)
��
q�;x�

= f 0(Q�)(1 + �+ ��=n) < (>)0 for � > (<)� (1 + �)n=�

@xixj�i = (@2�i=@xi@xj)
��
q�;x�

= �c00(Bx�)�q�f1 + �[1 + (n� 2)�]g < 0 for �c00 > 0

@xiqi�i = (@2�i=@xi@qi)
��
q�;x�

= �c0(Bx�) > 0

@�qi�i = (@2�i=@�@qi)
��
q�;x�

= f 0(Q�)(n� 1)q� < 0

@�xi�i = (@2�i=@�@xi)
��
q�;x�

= ��(n� 1)c0(Bx�)q� > 0 for � > 0

Regularity Conditions

�q � @qiqi�i + @qiqj�i(n� 1) = f 0(Q�) [n+ �(� + 1)] < 0

�x � @xixi�i + @xixj�i(n� 1) = �(c00(Bx�)B�q� + �00(x�)) < 0

� � �q�x � [@xiqi�i + � (n� 1) @xiqi�i] [@xiqi�i + � (n� 1)�@xiqi�i] = �q�x � (@xiqi�i)
2 �B > 0

with B � 1 + �(n� 1), � � 1 + �(n� 1), � � 1 + �(n� 1)� and ~� � 1 + �(n� 1)�2.

Remark: �q < 0, �� > �(� + n), whereas @qiqi�i < 0, �� > �2n, thus �q < 0 implies that @qiqi�i < 0,

and to have �x < 0 we need that c00 > 0 or �00 > 0, and therefore @xixi�i < 0.

The signs of the expressions follow under our assumptions.

A.1.2 Simultaneous model

Second order and regularity conditions. To start with, note that

�(Q�; x�) = �
�
c00(Bx�)B�(Q�=n) + �00(x�)

� �
f 0(Q�)(�(1 + �) + n)

�
� (c0(Bx�))2�B > 0. (20)

In particular, the above condition can be rewritten as [�(1 + �) + n]H(�) � �B > 0. Second

order conditions are: (i) @qiqi�i < 0, since @qiqi�i = 2f
0(Q) + �(Q=n)f 00(Q) = f 0(Q)(2 + ��=n),

we have @qiqi�i < 0 if � > �2n=�, which is implied by assumption �q < 0; (ii) @xixi�i < 0,

which is trivially satis�ed by Assumptions A.2 and A.3; and (iii) @qiqi�i (@xixi�i)�(@qixi�i)
2 > 0,

which is equivalent to

c0(Bx�)2 + f 0(Q�)(2 + ��=n)
h
c00(Bx�)(Q�=n)~�+ �00(x�)

i
< 0, (21)

3See Vives (1999, pp. 145-147) for a solution of a formally identical problem. Gilo et al. (2006, Lemma 1,
p.85) also show that �jj � 1 for all j, and 0 � �jk < �jj for all j and all j 6= k.
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where ~� = 1 + �(n� 1)�2. Noting that @qiqj�i = f 0(Q�)(1 + �) + f 00(Q�)�q� = f 0(Q�)(1 + �+

��=n), we have that

�q � @qiqi�i + @qiqj�i(n� 1) = f 0(Q�) [n+ �(� + 1)] < 0,

which is satis�ed if � > �(n + �)=�. Similarly, noting that @xixi�i = �c00(Bx�)~�q� � �00(x�)

and @xixj�i = �c00(Bx�)�q� f1 + � [1 + (n� 2)�]g, it is straightforward to show that

�x � @xixi�i + @xixj�i(n� 1) = �
�
c00(Bx�)B�q� + �00(x�)

�
< 0,

which is satis�ed by Assumptions A.2 and A.3.

Proof of Lemma 1. Using equation (6) and Table 4 we obtain

@x�

@�
=
c0(Bx�)f 0(Q�)(n� 1)q�

�
f� [�(1 + �) + n]� �g :

Since � > 0,

sign

�
@x�

@�

�
= sign f� [� (1 + �) + n]� �g

= sign

�
� � �

� (1 + �) + n

�
= sign

n
� � P 0(c) �

n

o
;

where P 0(c) = n=[�(1+�)+n]. Note that �(1+�)+n > 0 since �q < 0. Finally, by substituting

sign f� [� (1 + �) + n]� �g = sign f�(1 + n+ ��)� 1g :�

Proof of Corollary 1. From Lemma 1 we have that if � � �(1+n)=�, so 1+n+ �� � 0,

then @x�=@� < 0, which, using equation (7), in turn implies that @q�=@� < 0: for all � only

RI exists. If � > �(n + 1)=�, then in addition to RI, region RII exists only if � > �n=� also

holds. The reason is that when 1 + n + �� > 0, then, from Lemma 1, @x�=@� > 0 requires

that � > 1=(1 + n + ��). However, 1=(1 + n + ��) < 1 only if � > �n=�, in which case there

exists some region of feasible spillover values for which @x�=@� > 0. Note that for a given n,

the condition � > �n=� is stricter than the condition � > �(n + 1)=�. Thus, for � � �n=�

only RI exists, and since �n=� increases with �, the result holds for any � if � � �n.�
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Fig. 5a. n = 2. Fig. 5b. n = 3.

Fig. 5. Existence of regions RI and RII with second-order, stability and strategic comple-
ments/substitutes output competition conditions.

Proof of Lemma 2. If we totally di¤erentiate the �rst order conditions (FOCs) and solve

for @q�=@�, we obtain

@q�

@�
=
(n� 1)(Q�=n)

�
�c0(Bx�)2

�
B +

f 0(Q�)

�c0(Bx�)2
�
c00(Bx�)(Q�=n)B� + �00(x�)

��
:

Let H � � (@�qi�i=@�xi�i) (�x=@xiqi�i) = �
�
f 0(Q�)=c0(Bx�)2

�
[c00(Bx�)(Q�=n)B� + �00(x�)],

evaluated at the equilibrium (Q�; x�). From the requirement that c00 > 0 or �00 > 0 we obtain

that lim�!0H=� =1. H is continuous in � as long as Q� (�) ; x� (�) are since all the functions

involved in the de�nition of H are continuous and c0 < 0. We have that Q� (�) ; x� (�) are in

fact di¤erentiable given our assumptions (see the proof of Proposition 3). The above expression

can be rewritten as
@q�

@�
=
(n� 1)(Q�=n)

�
�
�
c0(Bx�)

�2�
B � H

�

�
; (22)

thus sign f@q�=@�g = sign f�B �Hg :�

Proof of Corollary 2. Under A.4 and Lemma 2, @q�=@� > 0 (so RIII exists) if � > �0. We

now show that the condition n > H(1) guarantees that �0 < 1. First, note that lim�!0H=� =1

(when c00 > 0 or �00 > 0), whileB = 1 at � = 0. SinceH(�)=� is downward sloping, by continuity

there exists only one value for �(= �0) at which H(�) = �B. If the condition H(�) < �B holds

at � = 1 (which is equivalent to the condition n > H(1)), then necessarily H=� intersects B at

some � less than 1, thus �0 < 1.�
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Proof of Proposition 2. Pro�t per �rm as a function of � at equilibrium is given by

��(�) = (f(Q�)� c(Bx�)) q� � �(x�).

By di¤erentiating �� with respect to �, we obtain

��0(�) = f 0(Q�)n
@q�

@�
q� � c0(Bx�)B@x

�

@�
q� + (f(Q�)� c(Bx�)) @q

�

@�
� �0(x�)@x

�

@�
.

Using that in equilibrium f(Q�) � c(Bx�) = �f 0(Q�)�q� and �0(x�) = �c0(Bx�)q�� , we can

rewrite the above expression as

��0(�) = f 0(Q�)n
@q�

@�
q� � c0(Bx�)B@x

�

@�
q� � f 0(Q�)�q�@q

�

@�
+ c0(Bx�)q��

@x�

@�

= f 0(Q�)(n� �)q�@q
�

@�
+ c0(Bx�)(� �B)q�@x

�

@�

= (n� 1)(1� �)q�
�
f 0(Q�)

@q�

@�
� �c0(Bx�)@x

�

@�

�
.

In RII, we have that @x�=@� > 0 and @q�=@� < 0. Hence from the above expression it is clear

that ��0(�) > 0. Note also that when � = 0, the equilibrium is in RI, and therefore ��0(�) > 0

since @q�=@� < 0. To determine signf��0(�)g in RI and RIII for � > 0, we replace @q�=@� and

@x�=@� with the expressions derived in the proofs of Lemmata 1, 2:

��0(�) = (n� 1)(1� �)q�
�
f 0(Q�)

(n� 1)q�
�

c0(Bx�)2�

�
B � H(�)

�

�
��c0(Bx�)(n� 1)q

�

�
f 0(Q�)c0(Bx�) f� [�(1 + �) + n]� �g

�
= #�

�
� [�(1 + �) + n]� � + H(�)

�
�B

�
,

where #� � (n� 1)(1� �)q� [(n� 1)q�=�] c0(Bx�)2�(�f 0(Q�)) is positive. Therefore,

sign
�
��0(�)

	
= sign

�
(n+ 1 + ��)� � 1 + H(�)

�
�B

�
, (23)

so it follows that ��0(�) > 0 if

1� (n+ 1 + ��)� < H(�)

�
�B, or equivalently (24)

2(1� �)� ��� < H(�)

�
. (25)

From Table 4 and using that in equilibrium �q� = ��0(x�)=c0(Bx�), the regularity condition
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can be written as

�
�
�c00(Bx�)B �0(x�)

c0(Bx�)
+ �00(x�)

�
f 0(Q�)

c0(Bx�)2
[� (1 + �) + n]� �B > 0.

Noting that

H(�) =
�f 0(Q�)
c0(Bx�)2

�
�c

00(Bx�)

c0(Bx�)
B�0(x�) + �00(x�)

�
,

we can rewrite the regularity condition in terms of H as follows: [�(1 + �) + n]H(�)� �B > 0,

with �(1 + �) + n > 0 since �q < 0. Thus, if the equilibrium is regular:

H(�)

�
>

�B

[�(1 + �) + n]�
.

Then, we only have to show that:

~g(�) � �B > ~h(�) � [2(1� �)� ���][�(1 + �) + n]�

holds. Note that ~g(0) = 1, ~g0(�) > 0, ~g00(�) > 0 for � > 0 and ~g00(0) = 0. On the other hand,

~h(0) = 0 and

~h0(�) = 2[�(1 + �) + n][1� (2 + ��)�].

Furthermore, it can be shown that solving the equation ~g(�) = ~h(�) for � yields the following

two roots:

�1 =
1

�� + n+ 1
and �2 =

1

�(� + 1) + 1
.

Consider RI. If the smallest (positive) root in this region is larger or equal to the spillover

threshold � that determines RI (i.e. for � < �, @x
�

@� < 0 for all �), then ~g(�) > ~h(�) in RI, and

consequently, ��0(�) > 0. First, note that when �� + n + 1 > 0, �1 = �. We distinguish the

following cases:

� If �� + n + 1 > 0, then: if �(� + 1) + 1 > 0, (for � < 1) �2 > �1 = � > 0, while

if �(� + 1) + 1 < 0, �1 = � > 0 > �2, so in any case �1 = � is the smallest positive

root in the region and, thus, ~g(�) > ~h(�) for � 2 (0; �1). Also, in any case for � = �1,

@x�=@� = 0 and so signf��0(�)g = signff 0(Q�)@q�=@�g, which is positive in RI since in

this region: @q�=@� < 0.

� If �� + n+ 1 < 0, then 0 > �1 > �2 (for � < 1) and ~h
00(�) > 0, so ~g(�) > ~h(�) for all �.

Now consider RIII, which may exist only if � > �n=�, in which case �1 > 0. Furthermore,

�0 � �1. We show that for any � > �0, ~g(�) > ~h(�). We distinguish the following cases:

9



� If � > �2=�, then �2 > �1 > 0 (for � < 1) and ~h
00(�) < 0. Hence, ~g(�) > ~h(�) for � > �2.

Thus, it su¢ ces to show that �0 > �2. Note that if �
0(�) > 0 for � = �0, then necessarily

�0 > �2 since �
0 > �1 and �

0(�) < 0 for � 2 (�1; �2). Since condition (24) holds at � = �0:

H(�0)=�0 �
�
1 + �0(n� 1)

�
= 0 > 1� (n+ 1 + ��)�, we have �0 > �2.

� If �(�+1)=� < �n=� < � < �2=� or �n=� < �(�+1)=� < � < �2=�, then �2 > �1 > 0

(for � < 1) and ~h00(�) > 0, so we can conclude that �0 > �2.

� If �n=� < � < �(� + 1)=� < �2=�, then �1 > 0, �2 < 0 and ~h00(�) > 0, so ~g(�) > ~h(�)

only for � < �1. Also, for �
0 < 1, condition (24) holds, so ~g(�) > ~h(�) for � � �0. But

then it should be �0 < �1, a contradiction, so in this case RIII does not exist.�

Proof of Proposition 3. By totally di¤erentiating the two FOCs with respect to �, we

obtain
@q�

@�
=
1

�
[(@�xi�i) (@xiqi�i)B � (@�qi�i)�x] (26)

@x�

@�
=
1

�
[(@�qi�i) (@xiqi�i) � � (@�xi�i)�q]: (27)

Since @xiqi�i > 0 and @�qi�i > 0, � > 0; �x < 0 and �q < 0, the sign of the impact of � on

output and R&D in equilibrium depends on the sign of @�xi�i. It can be shown that

@�xi�i = �c0(Bx�)
(n� 1)q�

B
�

�
�B

�
� �(Bx�)

�
(28)

and the result follows.�

Proof of Proposition 4. To prove Proposition 4 a few preliminary lemmata (assuming

A.1-A.4) are useful.

LEMMA 5 Suppose that � > �2, then for given �, W 0(�) > 0 i¤ � > �̂ (�) where �̂ is the

unique positive solution to the equation

H(�)

�
�B = [(n� �)=�] [(1 + n+ ��)� � 1]. (29)

Proof. We �rst derive the condition that determines �̂. By inserting @q�=@� and @x�=@�

10



(given in proofs of Lemmata 1 and 2) into (9) we obtain:

W 0(�) = ��f 0(Q�)(n� 1)q
�

�
c0(Bx�)2�

�
B � H(�)

�

�
Q�

�(1� �)�(n� 1)c0(Bx�)(n� 1)q
�

�
f 0(Q�)c0(Bx�) f� [�(1 + �) + n]� �gQ�;

= #w

�
�

�
B � H(�)

�

�
+ (1� �)(n� 1) f� [�(1 + �) + n]� �g

�
;

where #w � [(n� 1)q�=�]c0(Bx�)2(�f 0(Q�))�Q� is positive. Note that (1� �)(n� 1) = n��,

thus for � > 0, W 0(�) > 0 i¤

H(�)

�
�B <

n� �
�

[(1 + n+ ��)� � 1] : (30)

Note that lim�!0H=� = 1 and (by Assumption A.4) the left-hand side of (30) is decreasing

in �. The right-hand side of (30) is increasing in � (since 1 + n + �� > 0 holds when RII and

RIII exist) and �nite at � = 0. Thus, there exists a unique positive threshold �̂ that solves the

equation (29), and for any � > �̂ condition (30) holds, that is, W 0(�) > 0.�

LEMMA 6 We have that �̂(�) < �0(�) for all �, which implies that �� � �̂(0) < �0(0). Fur-

thermore, �� < 1 if

n+ (n� 1)(� + n)�H(1) > 0: (31)

Proof. We �rst show that �0(�) > �̂(�) for any �, and as a result �0(0) > �� � �̂(0).

Suppose that for given �, �̂ > �0, then from Lemma 2 we have that for � 2 (�0; �̂) it holds that

@q�=@� > 0. Thus, from equation (7) it also holds that @x�=@� > 0, which given equation (9)

implies that W 0(�) > 0. However, we have that W 0(�) < 0 for � < �̂, a contradiction. Suppose

now that �̂ = �0, then we can pick � such that � = �̂ = �0, and since H � �Bj�=�0 = 0, from

equation (29) we have that �̂ = �0 = 1=(1 + n+ ��), which implies that @x�=@� = 0 (see proof

of Lemma 1), and from equation (7) this in turn implies that @q�=@� < 0. However, at � = �0,

�B �H = 0, so @q�=@� = 0, a contradiction.

The proof of Lemma 5 shows that W 0(�) > 0 for some � if � > �̂ (�), where �̂ is the unique

positive solution to the equation (29). Furthermore, �̂ < 1 if condition (30) evaluated at � = 1

holds. Therefore, by evaluating (30) at � = 0 and � = 1 we obtain that condition (31) ensures

that �� < 1.�

We turn now to prove successively each of the statements of Proposition 4. Let � > �2:

i) �oTS = �oCS = 0 if � � ��. First, we show that there does not exist � < �� such that

W 0(�) > 0 for some positive �. This follows trivially from the assumption that W (�) is single
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peaked: since for any � � ��, W 0(0) � 0, we have that W 0(�) < 0 for all positive �, otherwise

there would exist another stationary point that is a (local) minimum, a contradiction. In

addition, if � � ��, then �oCS = 0: from Lemma 6 we know that �0(�) > �� = �̂(0) for all �. For

� � �� we have then that CS0(�) < 0 for all �, thus �oCS = 0.

ii) �oTS > �oCS = 0 if � 2
�
��; �0 (0)

�
. Since �� = �̂(0), the result that �oTS > 0 for � > �� follows

immediately from Lemma 5 because then W 0(0) > 0: In addition, � < �0(0) yields �oCS = 0:

when H is weakly increasing in �, �0(�) also is, and consequently if � < �0(0), then � < �0(�)

for all �, i.e., @q�=@� < 0 for all �, thus �oCS = 0.

iii) We �rst show that �oTS > 0 and �oCS > 0 if � > �0 (0). From Lemma 6 it follows that

� > �0(0) > ��, which yields �oTS > 0. If � > �0(0), Lemma 2 implies that @q�=@� > 0 at � = 0,

which implies that CS0(0) > 0, and therefore �oCS > 0:

Next we show that �oTS � �oCS when H is weakly increasing in �. Note that B > H=� at

� = 0. Since H is weakly increasing in �, for a given �, we may face the following three cases:

1) for all �, B > H=�; 2) there exists an interval (which could be a singleton) L � (0; 1] at

which H=� = B but H=� � B for � < 1; 3) there exists an interval of values of �, L � (0; 1] at

which H=� = B but H=� > B for some � < 1. In all three cases �oTS � �oCS:

Case 1: Here, @q�=@� > 0 and, by (7), @x�=@� > 0 for all �, which from equation (9) yields

W 0(�) > 0 for all �; thus �oTS = �oCS = 1.

Cases 2 and 3: In these two cases, in the region of values for � where H=� = B we have

@q�=@� = 0 (CS0(�) = 0), while @x�=@� > 0, consequently W 0(�) > 0. It follows that in Case

2, �oTS = 1, while any � 2 L is optimal in terms of CS since @q�=@� > 0 for any � < minL, thus

�oTS � �oCS; in Case 3, any � 2 L is optimal in terms of CS since @q�=@� < 0 for � > maxL;

�oTS � maxL since W 0(�) > 0 for lower values of �; as a result �oTS � �oCS.

The particular case where � = �0(0) can be dealt with similarly to obtain that �oTS � �oCS �

0.

Finally, we show that �oTS and �
o
CS are strictly increasing in � when �

o
TS and �

o
CS are in

(0; 1). We have that

W 0(�) = �c0(Bx�)2f 0 (Q�))(n� 1)q
�

�
�Q�' (�; �)

where ' (�; �) = � (B �H=�) + (n� �) (�(1 + n+ ��)� 1). Consider the FOC of the welfare

maximizing problem, W 0(�) = 0 if and only if ' (�; �) = 0. Given single-peakedness of W ,

signfd�oTS=d�g = signf@' (�oTS; �) =@�g. We have that

@'

@�
=

�
�
@

@�

�
B � H(�)

�

�
+ (n� �)(1 + n+ ��)

�
> 0

12



since H(�)=� is downward sloping, n � � � 0; and interior optimal lambdas require that RII

exists, i.e., � > �n=�, which in turn implies that 1+n+ �� > 0. Similarly, we can show, using

the fact that H(�)=� is decreasing in �, the result for �oCS 2 (0; 1).�

Proof of Proposition 5. If � > �(1+n)=n, then 1+n+ �� > 0 for all �. From Lemma 1

we know that when � � 1=(1+n+��): @x�=@� � 0. From Lemma 5 we have that W 0(�) > 0 if

� > �̂ (�) where �̂ is given in Lemma 5. Necessarily, �̂ > 1=(1+n+ ��), otherwise for any � 2h
�̂; 1=(1 + n+ ��)

i
, we have that @x�=@� � 0, which from equation (7) implies that @q�=@� < 0,

which using equation (9) yields W 0(�) < 0, a contradiction. Since �̂(�) > 1=(1 + n + ��) for

any �, then �̂(0) = �� > �, and given Lemma 6, � < �� < �0(0) is established. Next we prove

each of the statements. (i) When � > �(1 + n)=n not only RI but also RII may exist for n � 2

since � > �2. If �(1 + n)=n < � < 0, then inff1=(1 + n+ ��) : � 2 [0; 1]g = 1=(1 + n+ �) > 0,

whereas if � � 0, inff1=(1 + n + ��) : � 2 [0; 1]g = 1= [1 + n(1 + �)] > 0. In both cases, if

� � �, it follows from Proposition 1 that only RI can exist. (ii) Lemma 5 ensures that if � >

�� = �̂(0), then W 0(0) > 0, thus �oTS > 0; (iii) From Lemma 2 we have that if � > �0(0), then

@q�=@�j�=0 > 0, which implies that CS0(0) > 0: �oCS > 0.�

A.1.3 Two-stage model

Threshold ~�(�). Let zi be the action of �rm i (qi in Cournot) and let z� be the n-vector of

second stage equilibrium actions, then the FOC in the second stage is

@

@zi
�i(�) = 0, (32)

whereas in the �rst stage is

@

@xi
�i(z

�(x);x; �) +
X
j 6=i

@

@zj
�i(z

�(x);x; �)
@

@xi
z�j (x) = 0, (33)

where x is the n-vector of investment levels. The equilibrium in the two-stage model is thus

characterized by the system of equations (32) and (33).

To obtain ~�(�), we �rst need to obtain the expressions for @z�i (x)=@xi and @z
�
j (x)=@xi: we

di¤erentiate the FOC (32) with respect to xi and xh (h 6= i), and evaluate both derivatives in

the symmetric equilibrium, then

@zizi�i(x)
@

@xi
z�i (x) + (n� 1)@zizj�i(x)

@

@xi
z�j (x) + @xizi�i(x) = 0 (34)
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and

@zizj�i(x)
@

@xi
z�i (x) +

�
@zizi�i(x) + (n� 2)@zizj�i(x)

� @

@xi
z�j (x) + @xhzi�i(x) = 0. (35)

Solving (34) and (35) for @z�i (x)=@xi and @z
�
j (x)=@xi and rearranging terms, we obtain:

@

@xi
z�i (x) =

1




�
(�@xizi�i)

�
@zizi�i � @zizj�i

�
+ (n� 1) @zizj�i (@xhzi�i � @xizi�i)

�
and

@

@xi
z�j (x) =

1




�
@xizi�i@zizj�i � @xhzi�i@zizi�i

�
, (36)

where


 �
�
@zizi�i � @zizj�i

� �
@zizi�i + (n� 1) @zizj�i

�
. (37)

Consider Cournot competition, zi = qi. Then, we can rewrite (36) as follows:

@

@xi
q�j (x) =

�c0(Bx)



@qiqi�i

�
~�(�)� �

�
, (38)

where


 = f 0(Q�)(1� �)
�
f 0(Q�) [n+ �(� + 1)]

	
= f 0(Q�)2(1� �)[n+ �(� + 1)].

Since @qiqi�i = f 0(Q�)(2 + ��=n), we have that

@

@xi
q�j (x) = � c0(Bx)

f 0(Q�)(1� �)[n+ �(� + 1)]

�
2 +

��

n

��
~�(�)� �

�
= � c0(Bx)

nf 0(Q�)(1� �)

�
2n+ ��

n+ �(� + 1)

��
~�(�)� �

�
,

where

~�(�) =
@qiqj�i
@qiqi�i

=
n(1 + �) + ��

2n+ ��

with 0 < ~�(�) � 1 and ~�(1) = 1. Finally, note that

@�i
@qj

= �f 0(Q�)q�(1� �),
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thus for � < 1

@�i
@qj

@

@xi
q�j (x) = ��f 0(Q�)q�(1� �) c0(Bx)

nf 0(Q�)(1� �)

�
2n+ ��

n+ �(� + 1)

��
~�(�)� �

�
= �c0(Bx)q��

n

�
2n+ ��

n+ �(� + 1)

��
~�(�)� �

�
.

When � = 1 there is no strategic e¤ect since �rms are colluding. In this case maximum joint

pro�ts are achieved. However, when � < 1 the strategic e¤ect does not vanish when � ! 1.

This is so since @�i=@qj ! 0 and @q�j =@xi ! �1, i 6= j, at the same rate when � ! 1 and

the product of both derivatives is positive in the limit. Suppose that xi = xj , then as � ! 1

it is not e¢ cient to have �rm j produce when � < 1 if xi increases since then ci < cj . (Note

that cost is linear in output.) When � = 1 the strategic e¤ect does vanish in the limit � ! 1

since then ~�(�) ! 1. Indeed, when � = 1, if xi increases we have that ci = cj and both �rms

are equally e¢ cient. The consequence is that when � < 1 and �! 1 there is a discontinuity in

total pro�ts at our symmetric equilibrium, not attaining the cartel pro�ts achieved when � = 1.

Proof of Lemma 3. We have that

~�(�) =
n(1 + �) + ��

2n+ ��
.

By di¤erentiating ~� with respect to n we obtain:

@~�

@n
= � � (1� �)2

(2n+ ��)2
.

Thus, for � < 1 and convex demand (� < 0), @~�=@n > 0; if demand is concave (� > 0),

@~�=@n < 0. Let us now di¤erentiate ~� with respect to �:

@~�

@�
=

n2(� + 2)

(2n+ ��)2
,

then, @~�=@� > 0 if � > �2. Finally, we di¤erentiate ~� with respect to �:

@~�

@�
=
�n (1� �)
(2n+ ��)2

.

Thus, @~�=@� > 0 if � < 1.�

Proof of Lemma 4. Using (12), by totally di¤erentiating the system formed by (10; 11)
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in a symmetric equilibrium, and solving for @q�=@� and @x�=@�, we obtain

@q�

@�
=
1
~�
f[@�xi�i + (n� 1) �] (@xiqi�i)B � @�qi�i [�x +  x(n� 1)]g (39)

@x�

@�
=
1
~�

�
@�qi�i

�
@xiqi�i� + (n� 1) q

�
� [@�xi�i + (n� 1) �]�q

	
; (40)

where  z � @ =@z with z = q; x; �, and

~�(Q�; x�) = �q [�x +  x(n� 1)]� @xiqi�i
�
@xiqi�i� +  q(n� 1)

�
B;

which is assumed to be strictly positive.4 By rewriting equation (40) as follows

@x�

@�
= #f 0(Q�)c0(Bx�)

�
(� + s0(�)) [�(1 + �) + n]� [� + (n� 1)s(�)]

	
; (41)

where # � (n � 1)(Q�=n)= ~� and s(�) � !(�)(~�(�) � �), we get that sign f@x�=@�g is given

by (15). Let us now turn to the impact of � on output in equilibrium. Equation (39) can be

rewritten as follows

@q�

@�
= #

�
(� + s0(�))c0(Bx�)2B + f 0(Q�)

�
c00(Bx�)(Q�=n)B [� + (n� 1)s(�)] + �00(x�)

	�
:

(42)

By inserting the FOC (11) evaluated in the symmetric equilibrium into the above expression,

after some manipulations we get that sign f@q�=@�g is given by (16). Finally, note that the

FOC with respect to output is identical to the one associated to the static case. Therefore, we

obtain again equation (7), which implies that if @x�=@� � 0, then @q�=@� < 0. From (15), we

obtain that @x�=@� > 0 if and only if

� > �2S � 1� (!0(�)~�(�) + !(�)~�0(�))P 0(c)�1n+ !(�)(n� 1)~�(�)
(1 + n+ ��) + (n� 1)!(�)� P 0(c)�1n!0(�) :�

LEMMA 7 Under assumptions A.1.-A.4, in the two-stage model, there is a cut-o¤ spillover

value for spillovers (��2S < 1) above which allowing some overlapping ownership is socially

optimal (�oTS > 0) if

(1 + s0(0))n+ (1� s(0))(n� 1)((1 + s0(0))(1 + � + n)� [1 + (n� 1)s(0)]�H(1) > 0: (43)

4We show in Section A.2.2 that ~�(Q�; x�) > 0 is also a necessary condition for having a positive output at
equilibrium in AJ.
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Proof. By di¤erentiating W (�) we have

W 0(�) = [f(Q�)� c(Bx�)]n@q
�

@�
� c0(Bx�)BQ�@x

�

@�
� n�0(x�)@x

�

@�
.

Using the FOCs, f(Q�) � c(Bx�) = �f 0(Q�)Q��=n and (14) in the above expression, and

simplifying, we obtain:

W 0(�) =

�
��f 0(Q�)@q

�

@�
� [(1� �)� � s(�)] (n� 1)c0(Bx�)@x

�

@�

�
Q�. (44)

If we insert (41) and (42) into (44), after some manipulations we get

W 0(�) = #wQ
�(�f 0(Q�))

�
�
�
c0(Bx�)2(� + s0(�))B (45)

+f 0(Q�)
�
c00(Bx�)(Q�=n)B [� + (n� 1)s(�)] + �00(x�)

	�
+c0(Bx�)2 [(1� �)� � s(�)] (n� 1)

�
(� + s0(�)) [�(1 + �) + n]

� [� + (n� 1)s(�)]g] ,

where #w � (n� 1)(Q�=n)= ~�. Then W 0(0)j�=1 > 0 if and only if

0 < (c0(nx�))2
�
(1 + s0(0)

��
�=1

)n+ (1� s(0)j�=1)(n� 1)
n
(1 + s0(0)

��
�=1

)(1 + � + n) (46)

�
h
1 + (n� 1) s(0)j�=1

io�
+ f 0(Q�)

n
c00(nx�)Q�

h
1 + (n� 1) s(0)j�=1

i
+ �00(x�)

o
.

From equation (14) we have that in equilibrium and for � = 0 and � = 1:

Q�j�=0;�=1 = �
n�0(x�)

c0(nx�)
h
1 + (n� 1) s(0)j�=1

i .
Substituting Q�j�=0;�=1 into (46) and using the de�nitions for �(Bx�) and �(Q�; x�), we obtain

the condition for the two-period model:

0 < (1 + s0(0)
��
�=1

)n+ (1� s(0)j�=1)(n� 1)
n
(1 + s0(0)

��
�=1

)(1 + � + n)

�
h
1 + (n� 1) s(0)j�=1

io
�H(1),

where

s(0) =
(2n+ �)[(n+ �)=(2n+ �)� �]

n(n+ 1 + �)
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Table 2: Model Speci�cations

AJ KMZ CE
Demand f(Q) = a� bQ f(Q) = a� bQ f(Q) = �Q�"; 0 < " < 1

� = 0; a; b > 0 � = 0; a; b > 0 � = �(1 + "); a = 0; b = �� < 0
c(�) �c� xi � �

P
j 6=i xj �c� [(2=
)(xi + �

P
j 6=i xj)]

1=2 �(xi + �
P
j 6=i xj)

��; �; � > 0
�(x) (
=2)x2 x x

and

s0(0) = �
�
2n2 + �(2n+ 1) + �2

�
(n� 1)� � �2(n� 1)� �(2n2 � 1)� n(n2 + 1)

(n+ 1 + �)2n
.

Thus, s0(0)j�=1 = [1 + � � n(n� 2)] =(n + 1 + �)2. Note that by setting s = s0 = 0, we obtain

the condition for the simultaneous case, that is, (31).�

A.2 The three model speci�cations

In this section we characterize each of the model speci�cations considered in the paper: �rst in

the simultaneous and then in the two-stage model. First we describe brie�y the main assump-

tions of each model speci�cation.

As shown in Amir (2000) the AJ and the KMZ model speci�cations are not equivalent for

large spillover values (the critical value depends on the innovation function and on the number

of �rms). The di¤erence between the two models lies on the innovation function and the

autonomous R&D expenditures. Under the KMZ speci�cation, the e¤ective R&D investment

for each �rm is the sum of its own expenditure xi and a �xed fraction (�) of the sum of the

expenditures of the rest of �rms, i.e., Xi = xi+ �
P
j 6=i xj . Instead, under the AJ speci�cation,

Xi is the e¤ective cost reduction for each �rm, so c(�) is a linear function. Thus, in AJ decision

variables are unit-cost reductions, whereas in KMZ decision variables are the autonomous R&D

expenditures. In particular, in KMZ the unit cost of �rm i is �c� h(xi + �
P
j 6=i xj), where for

given xi � 0 (i = 1; :::; n) the e¤ective cost reduction to �rm i, h(�), is a twice di¤erentiable and

concave function with h(0) = 0, h(�) � �c, and (@=@xi)h(�) > 0. As in Amir (2000), to allow for

a direct comparison between AJ and KMZ, we consider a particular case of the KMZ model:

h = [(2=
)(xi+ �
P
j 6=i xj)]

1=2 with 
 > 0. The CE model considers constant elasticity demand

and costs with �; � > 0 (see Table 2); � is the unit cost of production (or innovation function)

elasticity with respect to the investment in R&D and there are no spillover e¤ects. Note that

the assumption " < 1 implies that � > �2, and consequently quantities are strategic substitutes.
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Finally, �(x) is quadratic in AJ but linear in KMZ and CE.

A.2.1 Simultaneous model

We �rst discuss comparative statics on equilibrium values given in Table A1, and then derive

Table A2, which provides the second-order and regularity conditions for the three model spec-

i�cations (we also explore the feasible region for the constant elasticity model in Lemma A1).

Second, we establish Lemma A2, which determines signf@q�=@�g and signf@x�=@�g for each

model speci�cation. Third, we derive the spillover threshold value �� and �0(0) in the examples

(Table A3). After that, we conduct a comparative statics analysis on ��. Finally, we examine

welfare in AJ and KMZ, obtain the optimal degree of overlapping ownership in each case (Table

A4) and state and prove Proposition A1.

Table A1: Equilibrium Values

AJ KMZ CE

q� 
(a��c)

b(�+n)�B�


(a��c)

b(�+n)��

1
���

�
� (��=n)" �"�1 (1� "�=n)

�(1+�)=["��(1�")]
x� �(a��c)


b(�+n)�B�

�2(a��c)2

2B[
b(�+n)�� ]2
1
B

�
� (��=n)" �"�1 (1� "�=n)

�1=["��(1�")]

Table A2: Second-Order Conditions and Regularity Condition

AJ KMZ CE

S:O:C 
b > 1=2 
b > �=(2~�) n > �(1+")
2 and "(1+�)

� > n(n�"�)
~�(2n+��)

Regularity Condition 
b > �B=(� + n) 
b > �=(� + n) "� �(1� ") > 0
with ~� � 1 + �(n� 1)�2.

Table A3: Spillover Thresholds �� and �0(0)

�� �0(0)

AJ
(n� 2) +

p
(n� 2)2 + 4b
(n+ 2)(n� 1)
2(n+ 2)(n� 1) [�1 +

p
1 + 4b
(n� 1)]=[2(n� 1)]

KMZ
(n� 2) + b
(n� 1) +

p
(n� 2)2 + b
(n� 1) [b
(n� 1) + 6n+ 4]
2(n+ 2)(n� 1) 
b

CE is the value above which:
(n� ")�� fB + (n� 1) [�(n� ")� 1]g � "(�+ 1)B > 0 "(�+ 1)=[�(n� ")]

Comparative statics on equilibrium values. In AJ and KMZ the R&D expenditure x�

and output q� per �rm increase with the size of the market (a) and decrease with the level of

ine¢ ciency of the technology employed, �c, the slope of inverse demand, b, and the parameter
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 (which is the parameter of the slope of the R&D costs in AJ). In the CE model x� and q�

increase with the size of the market, �. In addition, the costlier the technology employed, �,

the lower is total output, Q�. However, x� decreases (respectively, increases) with � if demand

is elastic (inelastic). The last two results hold for any value of � and �.5

Derivation of Table A2. In AJ and KMZ it is immediate that @qiqi�i = �2b < 0.

Furthermore, in AJ: condition @qiqi�i (@xixi�i)� (@qixi�i)2 > 0, given by (21), can be written as

2b
 � 1 > 0, since c00(�) = 0 and �00(x) = 
, so @xixi�i = �
 and @qixi�i = �c0(�) = 1. In KMZ,

(21) can be written as

"
1


2

�
2



(Bx�)

��1#
� 2b

"
1


2

�
2



(Bx�)

��3=2#
q�~� < 0. (47)

From FOC (3) we have that in equilibrium

q� =
�0(x�)

�c0(Bx�)� =
1

(1=
) [(2(Bx�)=
]�1=2 �
. (48)

Inserting the above equation into condition (47), after some manipulations, it reduces to 1 �

2b
~�=� < 0. (Note that if 
b > �=2 holds, then the condition 
b > �=(2~�) is satis�ed.) In AJ

and from (20), it is immediate that � = 
b(� + n) � �B since c00(�) = � = 0; f 0(Q) = �b and

�0(x) = 
x. In KMZ we have:

� = �
"
1


2

�
2



Bx�

��3=2
B�

1

(1=
)(2Bx�=
)�1=2�

#
[�b (� + n)]� 1


2

�
2



Bx�

��1
�B

=
1




�
2



Bx�

��1 �
Bb(� + n)� �B




�
.

Therefore, in KMZ � > 0 if 
b > �=(� + n). Regarding the constant elasticity model we have:

LEMMA A1 (Constant elasticity model) At the equilibrium, for a given n � 2 and � � 0,

second order conditions together with the condition of non-negative pro�ts require that

(i) maxf"�;�(1 + ")=2g < n � "�(B + ��)=(��),

(ii) "(1 + �)=� > n(n� "�)=
h
~�(2n+ ��)

i
, with ~� � 1 + �(n� 1)�2.

Furthermore, the equilibrium is regular if and only if (1 + �)=� > 1=".

Proof. From the FOC (2) we need that

n > "�, (49)

5The same result is obtained in Dasgupta and Stiglitz (1980) for � = � = 0 and free entry.
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otherwise the system (2; 3) will not have a solution. Since � = �(1+"), �q < 0 if condition (49)

holds (see Table 4). This condition also guarantees that Q� and x� are both positive. Notice

that @qiqi�i < 0 if (f
0(Q�)=n)(2n+ ��) < 0, then @qiqi�i < 0 if

n > �(1 + ")=2. (50)

Since � 2 [1; n], we have that the latter condition is always satis�ed for " < 1. By construction

@xixi�i < 0. Furthermore, second order condition @qiqi�i (@xixi�i) � (@qixi�i)
2 > 0, which is

given by (21), reduces to

�"�
n
Q��("+1)(2n+ ��)

h
�(�+ 1)�(Bx�)�(�+2)(Q�=n)~�

i
+ (��)2(Bx�)�2(�+1) < 0. (51)

From the FOC (2) we have that at the symmetric equilibrium

Q� = [�(n� "�)=(n�)]1=" (Bx�)�=". (52)

By substituting (52) into (51), after some manipulations, we obtain

(Bx�)�2(�+1)��2
n
� ["=(n� "�)] (2n+ ��)(�+ 1)~�=n+ �

o
< 0.

The above condition is satis�ed if "(�+1)=� > n(n�"�)=[(2n+��)~�], which proves statement

(ii) of the Proposition.

From (20) we have that � > 0 if

0 < ��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B
h
"(1 + ")�Q��("+2)�Q� � "�Q��("+1)(� + n)

i
�(��)2(Bx�)�2(�+1)�B, or

0 < Q��("+1)
h
��(�+ 1)�(Bx�)�(�+2)(Q�=n)�B

i
["(1 + ")��� "�(� + n)]

�(��)2(Bx�)�2(�+1)�B.

Substituting (52) into the above expression, we obtain

0 < �
�
�(n� "�)

n�

��("+1)="
(Bx�)�("+1)�="�(�+ 1)�(Bx�)�(�+2)

�
�(n� "�)

n�

�1="
(Bx�)�="

�B

n
["(1 + ")��� "�(� + n)]� (��)2(Bx�)�2(�+1)�B,
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rearranging terms yields

0 < (Bx�)�2(�+1)
�

n�

�(n� "�)

�
��(�+ 1)��B

n

��
�"�n+ "2��

�
� (��)2�B

�
, or equivalently,

0 < (Bx�)�2(�+1)��2�B ["(�+ 1)� �] .

Therefore, � > 0 holds if (1 + �)=� > 1=", or, equivalently, if "� �(1� ") > 0.

We turn now to deriving the condition under which pro�ts in equilibrium are nonnegative. At

the symmetric equilibrium, each �rm�s pro�t is given by �(Q�=n; x�) = [f(Q�)� c(Bx�)] (Q�=n)�

x�. Then, �(Q�=n; x�) � 0 if �� � [f(Q�)� c(Bx�)]Q�=(x�n) � 1. Write

#CE � �
���
n

�"
�"�1

�
n� "�
n

�
.

Then Q� = [n=(���)] #CE (1+�)=["��(1�")], x� = (1=B) #CE 1=["��(1�")], and condition �� � 1 can

be expressed as

�
�
� n

���

��"
#CE

�"(1+�)=["��(1�")] � � #CE ��=["��(1�")]
�
1

���
#CE

�=["��(1�")]B � 1.

Rearranging terms, and replacing #CE into the above expression, we get ["�=(n� "�)] [B=(��)] �

1. It follows that �� � 1 if �
"�

��

�
(B + ��) � n. (53)

Combining conditions (49), (50) and (53) yields statement (i).�

22



Fig. A1. Feasible region for the CE

model with n = 7.

Feasible region for the constant elasticity model with � = 0. From Lemma A1

we have that � > 0 if (1 + �)=� > 1=". When � = 0, the LHS of condition (i) is satis�ed

for any n � 2 since " < 1, moreover the RHS of condition (i) can be rewritten as follows

n � �CE(�) = "(1 + � � �)=(� � "�). Since �0CE > 0 (as we are also imposing that � > 0),

condition n � �CE(�) will hold for all � if n � "(1 + �)=�. Last, condition (ii) with � = 0

writes as "(1 + �)=� > n(n � ")= [2n� (1 + ")]. Therefore, at � = 0 we only have to consider

the RHS of condition (i) and condition (ii). These two conditions are depicted in Fig. A1 for

n = 7; the grey area are combinations (�; ") for which the two conditions are satis�ed (these

combinations of parameters also satisfy the two conditions for n � 7).

Determination of signf@q�=@�g and signf@x�=@�g in AJ, KMZ and CE. Note that

@q�=@� can be written in the following manner

@q�

@�
=
(n� 1)(Q�=n)

�

n�
c0(Bx�)

�2
�B + f 0(Q�)

�
c00(Bx�)(Q�=n)B� + �00(x�)

�o
, (54)

then after some calculations, it is simple to verify that in the simultaneous model:

LEMMA A2 We have (i) In AJ: sign
�
@q�

@�

�
= signf�(1+�(n� 1))� b
g and sign

�
@x�

@�

�
=

signf�(n + 1) � 1g; (ii) In KMZ: sign
�
@q�

@�

�
= signf� � 
bg and sign

�
@x�

@�

�
= signf�(n +

1)�1g; (iii) In the CE model: sign
�
@q�

@�

�
= signf� [�(n� "�)� �(n� 1)"(�+ 1)]�"(�+1)g
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and sign
�
@x�

@�

�
= signf� [(n� ")� �(n� 1)(1 + ")]� 1g.

Derivation of �� (Table A3). Note that @x�=@� can be written as

@x�

@�
=
(n� 1)(Q�=n)f 0(Q�)c0(Bx�)

�
[�(�(1 + �) + n)� � ] (55)

If we insert equations (54) and (55) into equation (9), after some manipulations we obtain

W 0(�) =
�
(n� 1)(Q�)2=(n�)

�
(�f 0(Q�))z, where

z � �f
�
c0(Bx�)

�2
�B + f 0(Q�)[c00(Bx�)(Q�=n)B� + �00(x�)]g

+
�
c0(Bx�)

�2
(1� �)�(n� 1) f� [�(1 + �) + n]� �g .

By noting that in AJ: f 0 = �b, � = 0, c0 = �1, c00 = 0 and �00 = 
, it then follows that

zAJ = zj�=0 = �B � b
 + �(n� 1) [�(1 + n)� 1]

= (n� 1)(n+ 2)�2 � (n� 2)� � b
.

By solving zAJ = 0 for � we obtain the expression for ��AJ . Notice that ��AJ < 1 if

(n� 2) +
p
(n� 2)2 + 4b
(n+ 2)(n� 1) < 2(n+ 2)(n� 1),

or

(n� 2)2 + 4b
(n+ 2)(n� 1) < [2(n+ 2)(n� 1)� (n� 2)]2 ,

which can be rewritten as 4b
(n+2)(n� 1) < 4n2(n+2)(n� 1). Thus, ��AJ < 1 if b
 < n2. In

KMZ we have c = �c�
q
(2=
)(xi + �

P
j 6=i xj), f

0 = �b, � = 0 and �00 = 0, then

zKMZ = zj�=0 =
�

2
x�
+

�bq�B

2 (2Bx�=
)3=2

+
�(n� 1) [�(1 + n)� 1]

2
Bx�

=
1

B

 
�bq�B1=2


2 (2x�=
)3=2
+

�

2
x�
fB + (n� 1) [�(1 + n)� 1]g

!
.

By replacing q� and x� into the above expression, after some calculations we get

zKMZ =
[b
(1 + n)� 1]2


(a� �c)2

�
�bB + �



fB + (n� 1) [�(1 + n)� 1]g

�
.
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It is then immediate that: zKMZ > 0 , � > ��
KMZ . Notice that ��KMZ

< 1 if

�
(n� 2)2 + b
(n� 1) [b
(n� 1) + 2(3n+ 2)]

	1=2
< 2(n+ 2)(n� 1)� n+ 2� b
(n� 1),

which can be rewritten as 4n(n + 2)(n � 1)(�n + b
) < 0. In the constant elasticity model

f = �Q�", c = �(xi + �
P
j 6=i xj)

�� and �(x) = x, then

zCE = zj�=0 = (��)
2(Bx�)�2(�+1)�B � "�(Q�)�"�1�(�+ 1)�(Bx�)�(�+2)q�B

+(��)2(Bx�)�2(�+1)�(n� 1) [�(�"+ n)� 1] .

By replacing q� and x� into the above expression, we obtain

zCE = �2�2z�2(1+�)�B � "� [n=(��)]�(1+") z�(1+�)(1+")(�+ 1)z�(�+2)z�+1B (56)

+�2�2z�2(1+�)�(n� 1) [�(�"+ n)� 1] ,

where

z �
h
�
���
n

�"
�"�1 (1� "=n)

i1=["��(1�")]
.

By noting that z�(�+1)(1+")�(�+2)+(�+1) = z�"+�(1�")z�2(1+�) we can re-write equation (56) as

follows

zCE = z�2(1+�)��2 f��B + ��(n� 1) [�(�"+ n)� 1]� "(�+ 1)B=(n� ")g .

Hence zCE > 0 if and only if

(n� ")�� fB + (n� 1) [�(n� ")� 1]g � "(�+ 1)B > 0.�
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Threshold value ��

Fig. A2a. AJ model. Fig. A2b. KMZ model.

Figure A3a. CE model. Figure A3b. CE model.

Comparative statics on ��. Fig. A2a (respectively Fig. A2b) shows the value for �� under

the AJ (KMZ) model speci�cation as a function of the number of �rms and for di¤erent values

of 
b. As the �gure makes clear, ��AJ and ��KMZ decrease with n: when there are more �rms in

the market, there is more need for overlapping ownership in order to internalize the additional

externalities. We also have that ��AJ and ��KMZ decrease with 
b, although �� is lower than 1

for lower values of 
b in the KMZ model than in the AJ model.

Fig. A3a and Fig. A3b depict ��CE as a function of n and for di¤erent values for � and

". A glance at these �gures shows that ��CE decreases again with n (for given " and �). In
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Table A4: Optimal Degree of Cross-ownership in AJ and KMZ

�oTS

AJ min
n
max

n
0; [(n+2)(n�1)��(n�2)]��b
(n�1)[2(��1)�+b
]

o
; 1
o

KMZ min
n
max

n
0; [(n+2)(n�1)��b
(n�1)�(n�2)]��b
(n�1)f[2�+b
(n�1)�2]�+b
g

o
; 1
o

addition, Fig. A3a tells us that for given n and ", ��CE decreases with the elasticity of the

innovation function, �, whereas Fig. A3b shows that for given n and �, ��CE increases with ",

so it decreases with the elasticity of demand. We also have that for the (feasible) combination

of parameters (�; ") considered here, ��CE � 1 when there are two or three �rms in the market.

Optimal degree of overlapping ownership (TS and CS standard)

Fig. A4a. CE model.

(� = 0:1, � = � = 1, n = 8, � = 0:8)

Fig. A4b. CE model.

(" = 0:8, � = � = 1, n = 8, � = 0:8)

Fig. A4a and A4b show that the greater is the elasticity of demand, "�1, or the elasticity

of the innovation function, �, the greater should be the degree of overlapping ownership if the

social planner seeks to maximize total surplus; however, if the objective is to maximize consumer

surplus, then for the same parameter range, �oCS = 0.

Welfare in AJ and KMZ. Here, we show that welfare is a single-peaked function in AJ

and KMZ; we also derive �oTS under these two model speci�cations (Table A4).
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Case AJ: By inserting equilibrium values into the welfare function we get

W =
1

2
n
(a� �c)2 (2� + n)
b� �

2

[(� + n)
b�B� ]2
.

If we di¤erentiate W with respect to � we obtain:

dW

d�
= �(n� 1)(a� �c)
b f�
b+ � [2� (B � n) + n� 2� �(n+ 2)(n� 1)]g

[(� + n) b
 �B� ]2
Q.

Note that solving dW=d� = 0 for � yields a unique stationary point, given by �̂AJ . By taking

the second order derivative with respect to �, evaluating it at � = �̂AJ , and simplifying, we

obtain
d2W

d�2

����
�=�̂AJ

= � (n� 1)2(a� �c)
b [2 (� � 1)� + 
b]3�
�(n+ 2)(n� 1)2�4 � 6(n� 1)�3 + Z1 + 2Z2 � Z3

�2Q,
where Z1 �

��
n2 + 4n� 1

�

b+ 3 (n� 2)

�
�2, Z2 � 2 [
b(1� 2n) + 1]� and Z3 � 
b(1 � 
bn).

The second order condition requires that 
b > 1=2 (see Table A2), then 2(� � 1)� + 
b > 0 for

any � 2 [0; 1], and as a result: d2W=d�2
��
�=�̂AJ

< 0. Since �̂AJ is the unique stationary point

of W , it follows that �̂AJ is a global maximum. This is the desired �oTS.

Case KMZ: By inserting equilibrium values into the welfare function we get

W =
1

2
n
(a� �c)2 (2� + n)B
b� �

2

[(� + n)
b� � ]2B
.

By di¤erentiating W with respect to � we obtain:

dW

d�
= �(n� 1)(a� �c)
b f�B
b+ � [2� (B � n) + n� 2� �(n+ 2)(n� 1)]g

B [(� + n) b
 � � ]2
Q,

and by solving dW=d� = 0 for � we get a unique stationary point, given by �̂KMZ . The second

order derivative with respect to � evaluated at � = �̂KMZ yields

d2W

d�2

����
�=�̂KMZ

=

b(n� 1)2(a� �c)
B [(� + n)
b� � ]3

ZKMZQ,

where ZKMZ � � [�n+ (1� �)]n(
b)2+
�
4�(1� �)n+ (1� �)2 � �2n2

�

b+�B [�(n+ 2)� 2].

The regulatory condition requires that 
b > �=(�+n) (see Table A2), thus d2W=d�2
��
�=�̂KMZ

<

0 whenever ZKMZ < 0. Since �̂KMZ is the unique stationary point of W , it follows that �̂KMZ

is a global maximum whenever ZKMZ < 0. This is the desired �oTS. It is straightforward to show

that the regularity condition is stricter than the second order condition under the KMZ model

speci�cation for n > 2 (see Table A2). In addition, the regularity condition becomes stricter
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as � and n increase. For � = 1, the maximum value of the right-hand side of the regularity

condition is
p
n(n�1)= [4(n�

p
n)], which for example equals 0:60 for n = 2 and 0:68 for n = 3.

Numerical simulations show that assuming 
b > 0:62 guarantees that ZKMZ < 0 holds for any

n; thus, ZKMZ < 0 is a mild condition: it is slightly stricter than the regularity condition in

duopoly but softer for oligopoly of three or more �rms.�

PROPOSITION A1 A Research Joint Venture with no overlapping ownership (� = 0 and

� = 1) is socially optimal in AJ when 
b � n2, in KMZ when 
b � n, and in CE (provided

that W (�) is single peaked) when � � "n=[(n� 1)"2 + (�1 + n� 2n2)"+ n(n2 + 1� n)].

Proof. When W (�) is single peaked, �� is the minimum threshold above which allowing

some positive � is welfare enhancing (Proposition 4). Consequently, �oTS = 0 for any � 2 [0; 1]

if �� � 1. From Table A3 we have that ��AJ � 1 if 
b � n2 and ��KMZ � 1 if 
b � n;

in both cases W (�) is single peaked (see above). Also, from Table A3 we obtain ��CE , and

solving ��CE = 1 for �, yields the threshold value in terms of n and ": ��CE � 1 if � �

"n=[(n � 1)"2 + (�1 + n � 2n2)" + n(n2 + 1 � n)]. Next we show that for � = 0, W 0(�) > 0

under AJ, KMZ and CE model speci�cations, and therefore it is socially optimal to set � = 1

in the three cases. We can write

@W

@�
= (f(Q�)n� nc(Bx�)) @q

�

@�
� nc0(Bx�)(n� 1)x�q� � nc0(Bx�)B@x

�

@�
q� (57)

�n�0(x�)@x
�

@�

=

�
��f 0(Q�)@q

�

@�
� (1� �)�(n� 1)c0(Bx�)@x

�

@�
� c0(Bx�)(n� 1)x�

�
Q�.

In AJ and for � = 0, @q�=@� > 0 and @x�=@� > 0 (see Table A1), thus from (57) it is clear

that @W=@� > 0. In KMZ and for � = 0, @q�=@� = 0 and @x�=@� < 0. Higher R&D spillovers

reduce R&D expenditures but also the unit cost of production of all �rms. The latter dominates

the former:
@W

@�

����
�=0

=
1

2

n(a� �c)2
(n� 1)
[b
(n+ 1)� 1]2B2

> 0.

In CE and for � = 0, @q�=@� = 0 and @x�=@� < 0. As in KMZ, welfare is increasing in �:

@W

@�

����
�=0

=
n
�
�
�
�
n

�"
�"�1

�
1� "

n

�� 1
"��(1�") (n� 1)

B2
> 0.�

Fig. A5 is a snapshot of the application and depicts optimal lambdas as a function of R&D

spillovers in the �rst panel; welfare, consumer surplus and pro�t as a function of � in the second
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panel, price and cost in the third panel, and q� and x� in the last panel (for � = 0:5 and n = 6).

The �gure illustrates that for an intermediate value of �, consumer surplus decreases with �,

and also does so welfare when � is not too low (second panel), whereas for � su¢ ciently large,

it is optimal in terms of consumer surplus and welfare to have � = 1 (�rst panel).

Snapshot of the Application

Fig. A5. AJ model. (a = 700, �c = 500, 
 = 8:5, � = 0:5, b = 0:6)
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Optimal degree of overlapping ownership (TS and CS standard)

Fig. A6a. KMZ model.

(
 = 3, n = 6, b = 0:3)

Fig. A6b. KMZ model.

(
 = 3, � = 0:8, b = 0:3)

Table A5: E¤ect of Parameters on �oTS and �
o
CS

�oTS �oCS
AJ KMZ CE AJ KMZ CE

Number of �rms (n) + + + h+i 0 (+)
Elasticity of demand (b�1; "�1) + + + h+i h+i [+]
Elasticity of innovation function (
�1; �) + + h+i h+i [+]
Degree of spillover (�) + + + (+) (+)� [+]

Key: h+i, the parameter enlarges the region where �oCS = 1; (+), the e¤ect is positive only if both � and n

are su¢ ciently large (otherwise there is no e¤ect); (+)�, the e¤ect is positive only if the parameter is su¢ ciently

large and 
b is su¢ ciently small (otherwise there is no e¤ect); [+], the e¤ect is positive when n is su¢ ciently

large (otherwise there is no e¤ect).

A.2.2 Two-stage model

Next we present equilibrium values of output and R&D together with the expressions for

signf@q�=@�g and signf@x�=@�g for each model speci�cation. After that, we conduct a com-

parative statics analysis on ��, and on �oTS and �
o
CS. Finally, we compare the static and the

two-stage model and brie�y discuss the comparative statics on the other parameters of the

model.

Equilibrium values and sign f@q�=@�g and sign f@x�=@�g. We consider each case in

turn.
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Case AJ: FOCs (10; 14) yield

�b�q� + a� bnq� � �c+Bx� = 0

�
� +

�

n+ �
(n� 1) (1 + �� 2�)

�
q� � 
x� = 0.

Solving the system for equilibrium values gives

q� =

(a� �c)

~�
and x� =

h
(n� 1)( �

n+�)(1 + �� 2�) + �
i
(a� �c)

~�

where

~� � 
b(� + n)2 �B [(n� 1)�(1 + �� 2�) + (n+ �)� ]
� + n

.

In this case, as in the simultaneous model, H(�) = b
, then using (16) we obtain

sign

�
@q�

@�

�
= sign

�
(B� � b
) (n+ �) +B

�
1 + �� 2�
n+ �

(n� 1)n+ �
��

and using (15) we get

sign

�
@x�

@�

�
= signf� [� + n+ (n� 1)(!(�)� �)] (58)

+

�
1 + �� 2�
n+ �

(n� 1)n+ �
�
� 1� (n� 1)!(�)~�(�)g,

where we have used that

h
!0(�)(~�(�)� �) + !(�)~�0(�)

i
(� + n) =

1 + �� 2�
n+ �

(n� 1)n+ �.

Case KMZ: The output and R&D values in equilibrium are given by (10; 14):

�b�q� + a� bnq� � �c+
��
2




�
Bx�

�1=2
= 0

1




��
2




�
Bx�

��1=2 �
� + (n� 1) �

n+ �
(1 + �� 2�)

�
q� � 1 = 0.

Solving the system for equilibrium values gives

q� =

(a� �c)


b(� + n)� #KMZ
and x� =

1

2

(a� �c)2#2KMZ


B [b
(� + n)� #KMZ ]
2

with #KMZ � � + s(�)(n� 1) = (n� 1) �
n+� (1 + �� 2�) + � , where s(�) � !(�)(~�(�)� �).
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In this case, as in the simultaneous model, H(�) = b
B, then from (16) we have

sign

�
@q�

@�

�
= sign

�
(� � b
)(n+ �) +

�
1 + �� 2�
n+ �

(n� 1)n+ �
��

and signf@x�@� g is again given by (58).

Case CE: The output and R&D values in equilibrium are obtained from (10; 14):

�Q��"
�
1� "�

n

�
� �(Bx�)�� = 0

�(Bx�)���1
h
� + (n� 1)!(�)(~�(�)� �)

i Q�
n
= 1.

Solving the system for Q� and x�, after some manipulations, we get

Q� =
n

�� [(n� 1)s(�) + � ]

�
�

�
[(n� 1)s(�) + � ]�

n

�"
�"�1

�
1� "�

n

��(1+�)=["��(1�")]
and

x� =
1

B

�
�

�
[(n� 1)s(�) + � ]�

n

�"
�"�1

�
1� "�

n

��1=["��(1�")]
,

where s(�) � !(�)(~�(�)� �) with

!(�) =
� [2n� �(1 + ")]

n(n� "�) and ~�(�) =
n(1 + �)� �(1 + ")
2n� �(1 + ") .

Hence, we have

sign

�
@q�

@�

�
= sign

��
� + s0(�)

�
� �+ 1

�

"

n� "� [(n� 1)s(�) + � ]
�
.

And, one can obtain signf@x�=@�g by inserting values into (15) with � = �(1 + ").
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Threshold value ��

Fig. A7a. AJ model. Fig. A7b. KMZ model.

Fig. A8a. CE model. Fig. A8b. CE model.

Comparative statics on ��. Fig. A7a and A7b depict, respectively, the threshold ��2S

under the AJ and KMZ model speci�cations. Fig. A7b reveals that in KMZ, ��2S tends to be

above 1 if we consider the same values as in AJ. In particular, only if 
b is low enough, we have

that ��2S < 1 (this result is in line with the simultaneous model). Also, we observe that under

the AJ and KMZ model speci�cations, ��2S decreases with the number of �rms and increases

with 
b. Figures A8a (respectively A8b) depict the threshold ��2S for the CE model for a given

" (�) and di¤erent values of n and � ("). As in the simultaneous model, the threshold value

decreases with n, the elasticity of the innovation function, �, and the elasticity of demand "�1.
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Comparative statics on �oTS and �oCS. Fig. A9 is a snapshot of the application and

plots welfare, consumer surplus, pro�t, price, cost, q� and x� as functions of � (for � = 0:65 and

n = 6). Note that pro�t at equilibrium can decrease with � for � su¢ ciently high. The reason is

that in the two-stage model, there are incentives to overinvest so as to reduce the rival�s output

when � is not too high and this situation is more likely for larger values of � since ~� (�) is

increasing in �. Recall that as �! 1 and � < 1, the symmetric equilibrium does not converge

to the cartel outcome which yields pro�ts which are higher than ��(�) for any � < 1. We have

that ��(�) converges to the monopoly pro�t as � ! 1 when � = 1 (see the explanation just

before the proof of Lemma 3). Fig. A10a, A10b and A10c show, respectively, optimal lambdas

in AJ, KMZ and CE as functions of the number of �rms. We see that under the three model

speci�cations, �oTS weakly increases with n, whereas �
o
CS jumps with n only in AJ (and only for

n su¢ ciently large).
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Snapshot of the Application

Fig. A9. AJ model. (a = 700, �c = 500, 
 = 7, n = 6, b = 0:6)
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Optimal degree of overlapping ownership (TS and CS standard)

Fig. A10a. AJ model.

(a = 700, �c = 500, 
 = 7, � = 0:8,

b = 0:6)

Fig. A10b. KMZ model.

(a = 700, �c = 500, 
 = 5, � = 0:8,

b = 0:3)

Fig. A10c. Constant elasticity model.

( � = 0:1, " = 0:8, � = � = 1, � = 0:8)

Comparison between the static and the two-stage model. In the constant elasticity

model, as in the simultaneous case, we observe that if n is small then the equilibrium is in RI,

which implies that no overlapping ownership is socially optimal. Yet as � and n increase, �oTS

also increases.6 Note that �oTS in the two-stage game is above the static level in a large region of

6This result is consistent with the literature. For example, in a model with no overlapping ownership Spence
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spillovers. For low values of �, the strategic e¤ect is positive. Then, the two-stage model behaves

di¤erently than the static model in that welfare can increase with � in RI because it reduces

R&D overinvestment by �rms. This case is illustrated in Figure A11, where� for low �� �oTS

in the two-stage model is larger than in the static model. For intermediate values of spillovers,

the strategic e¤ect becomes negative (but remains close to zero); for higher spillover values, �oTS

increases with � more rapidly (i.e., convexly) when the strategic e¤ect is strong.

Fig. A11. Constant elasticity model.

(� = 0:1, " = 0:8, � = � = 1, n = 8.)

Fig A12. AJ model.

(
 = 7, n = 6, b = 0:6.)

In the AJ model, we �nd that �oTS and �
o
CS are weakly larger in the two-stage case (see

Figure A12). In contrast with the static model, the simulations indicate (for � = 0:65 and

n = 6) that prices may be hump-shaped while cost decreases with �; correspondingly, output

per �rm is U-shaped when R&D per �rm increases. The welfare translation of the increase

in � displays U-shaped consumer surplus and increasing pro�t per �rm, which results in an

interior solution for welfare that features a large positive value of �oTS (see Figure A9) with

�oCS = 1 > �oTS > 0.

This becomes possible when the strategic e¤ect is positive and strong enough. Then there

is overinvestment in R&D during the �rst stage, which boosts output in the second stage. The

strategic e¤ect becomes positive for intermediate values of � when � is su¢ ciently high. For

an intermediate level of spillovers, total surplus is not maximized with full cooperation because

that would entail too much production (reducing �rms�pro�ts).7

(1984) used numerical simulations to demonstrate that an increase in � reduces x� and that, for a given � and
n � 2, the cost reduction relative to the social optimum declines with n (see Spence 1984, Table I). It is socially
good then to increase the degree of pro�t internalization.

7More precisely, since �2S0 decreases with �, it follows that� for a given � and a su¢ ciently high �� we have
� > �2S0 and so the equilibrium is then in RIII, where CS increases with � (CS is strictly convex in � and so
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Figure A13 shows optimal lambdas for KMZ as a function of � in the simultaneous and

two-stage model. As in AJ, we can have �oCS > �oTS for intermediate spillover values (because

of the strategic e¤ect).

Optimal degree of overlapping ownership (TS and CS standard)

Fig. A13. KMZ model.

(a = 700, �c = 500, 
 = 5:5, n = 2,

b = 0:2)

The pattern of results in our comparative statics analysis of the other parameters in AJ,

KMZ, and CE is similar to that for the one-stage game (see Table A5). The only exceptions we

have found are as follows. In AJ: although decreasing b enlarges the region where �oCS = 1 is

optimal (as in the static case), �oCS can be lower than 1 (for a su¢ ciently low b) when spillovers

are su¢ ciently high. In KMZ: although �oCS is independent of n in the static case, in the

two-stage game it can decrease with n when there are few �rms in the market.

B Bertrand competition with di¤erentiated products

B.1 Framework and equilibrium

In this Section we establish the framework and solve for the interior equilibrium of the model

by deriving the FOCs.

��CS = 1 when CS(1) > CS(0)). In particular: for � = 0:62, the equilibrium is in RIII when � > 0:41. Here the
strategic e¤ect is positive since ~�(�) > 0:62 for � > 0:24. Furthermore, if � > 0:69 then the strategic e¤ect is
strong enough to reverse the sign of the e¤ect of @x�=@� on W 0(�) (i.e., to make it negative); as a result, in a
neighborhood of � = 0:62 there is a global maximum for W (�): even if the equilibrium is in RIII we have that
W 0(�) < 0 for high values of �, which implies �oTS 2 (0; 1).
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We consider an industry with n di¤erentiated products, each produced by one �rm. The

demand for good i is given by qi = Di(p) where p is the vector of prices. Goods are (strict)

gross substitutes, @Di=@pj > 0, j 6= i. Assumptions A.2, A.3 and A.4 (with H as de�ned below)

are maintained, we replace Assumption A.1 by the following one:

Assumption 1B. For any product i, the function Di (�) is smooth whenever positive, down-

ward sloping, products are (strict) gross substitutes with @Di=@pj > 0, j 6= i, and the demand

system D (�) is symmetric with negative de�nite Jacobian.

Under Assumption 1B the demand system can be obtained from a representative consumer

with quasilinear utility and can be inverted to obtain inverse demands (see Vives 1999, pp. 144-

148). Furthermore, it follows that the demand for a variety when all �rms set the same price

(the Chamberlinian DD function) is downward sloping since the own-price e¤ect dominates the

cross-price e¤ects:

v � @Di
@pi

+ (n� 1)@Dj
@pi

< 0, j 6= i:

It follows that v� � @Di=@pi + �(n� 1)@Dk=@pi < 0. The innovation function is de�ned as

in Cournot. The �rm i�s pro�t now writes as

�i =

 
pi � c

 
xi + �

P
j 6=i

xj

!!
Di(p)� �(xi)

and the objective function for the manager of �rm i is again: �i = �i + �
P
k 6=i �k, thus

�i =

 
pi � c

 
xi + �

P
j 6=i

xj

!!
Di(p)��(xi)+�

P
k 6=i

" 
pk � c

 
xk + �

P
j 6=k

xj

!!
Dk(p)� �(xk)

#
.

B.2 Simultaneous model

The FOCs for an interior symmetric equilibrium are

@�i
@pi

= Di(p) + (pi � ci)
@Di(p)

@pi
+ �

P
k 6=i
(pk � ck)

@Dk(p)

@pi
= 0, (59)

@�i
@xi

= �c0(�)Di(p)� �0(xi)� �
P
k 6=i

c0(�)�Dk(p) = 0. (60)

The symmetric equilibrium is the pair (p�; x�), with q� = Di(p
�) where p� = (p�; :::; p�) for all

i, that solves the system (59)-(60). The FOC for price in the symmetric equilibrium is

q� + (p� � c(Bx�))@Di(p
�)

@pi
+ �(n� 1)(p� � c(Bx�))@Dk(p

�)

@pi
= 0.
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Note that v < 0 ensures that p� � c(Bx�) is strictly positive for all �; the above condition can

be rewritten as

q� +
(p� � c(Bx�))

p�
@Di(p

�)

@pi

p�q�

Di(p�)
+ �(n� 1)(p

� � c(Bx�))
p�

@Dk(p
�)

@pi

p�q�

Dk(p�)
= 0.

Using the notation: �i = � (@Di(p�)=@pi) (p�=Di(p�)) and �ik = (@Dk(p
�)=@pi) (p�=Dk(p

�)),

k 6= i, we can write

1� p� � c(Bx�)
p�

�i + �(n� 1)
p� � c(Bx�)

p�
�ik = 0.

From the above condition and from (60), a symmetric (interior) equilibrium will satisfy the

following two conditions:
p� � c(Bx�)

p�
=

1

�i � �(n� 1)�ik
; (61)

�c0(Bx�)q�� = �0(x�). (62)

Note that the latter condition is also obtained in Cournot oligopoly.

Finally, we assume the following parallel regularity conditions to the Cournot case:

�p � @pipi�i + (n� 1)@pipj�i < 0 (63)

and

� � �p�x �
�
@xipi�i + (n� 1)@pjxi�i

� �
@xipi�i + (n� 1)@xjpi�i

�
> 0, (64)

where

�x � @xixi�i + (n� 1)@xixj�i.

Since @xixi�i = �c00(Bx�)
�
1 + �(n� 1)�2

�
q���00(x�) and @xixj�i = �c00(Bx�) [� + � (1� �)]�q�,

it follows that

�x = �c00(Bx�)q��B � �00(x�) < 0 (65)

under Assumptions A.2 and A.3. Together conditions (63) and (64) imply that the FOCs (61)

and (62) both have a unique symmetric solution if they hold globally, and we assume that a

symmetric regular equilibrium exists.

B.2.1 Comparative statics with respect to �

In this Section we show that, as in the Cournot oligopoly model, if @x�=@� � 0, then @p�=@� > 0

(Lemma B1). Secondly, we derive the signs: sign f@x�=@�g and sign f@p�=@�g (Lemma B2).
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Finally, we discuss conditions that identify the three regions in Bertrand competition with

product di¤erentiation.

As in the Cournot oligopoly model, we can establish

LEMMA B1 In the symmetric equilibrium, @p
�

@� > 0 if @x
�

@� � 0.

Proof. By totally di¤erentiating the FOC @�i=@pi = 0 with respect to � we obtain:

@pipi�i
@p�

@�
+ (n� 1)@pipj�i

@p�

@�
+ @xipi�i

@x�

@�
+ (n� 1)@xjpi�i

@x�

@�
+ @�pi�i = 0.

Therefore,

@p�

@�
= � 1

@pipi�i + (n� 1)@pipj�i

�
@�pi�i +

�
@xipi�i + (n� 1)@xjpi�i

� @x�
@�

�
.

Using the stability condition �p < 0, it follows that

sign

�
@p�

@�

�
= sign

�
@�pi�i +

�
@xipi�i + (n� 1)@xjpi�i

� @x�
@�

�
. (66)

Since @�pi�i = (n� 1)(p� � c(Bx�))@Dk(p�)=@pi > 0, we have that

@x�

@�
� 0) @p�

@�
> 0 when # � @xipi�i + (n� 1)@xjpi�i < 0.

Note that

@xipi�i = �c0(Bx�)@Di(p
�)

@pi
� �(n� 1)c0(Bx�)�@Dk(p

�)

@pi

= �
�
@Di(p

�)

@pi
+ �(n� 1)�@Dk(p

�)

@pi

�
c0(Bx�).

The expression @xjpi�i can be obtained from (59):

@xjpi�i = �c0(Bx�)�@Di(p
�)

@pi
� �c0(Bx�)@Dk(p

�)

@pi
� �(n� 2)c0(Bx�)�@Dk(p

�)

@pi

= �
�
�
@Di(p

�)

@pi
+ � (B � �) @Dk(p

�)

@pi

�
c0(Bx�).
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Using the above expression we can write

# = �
�
@Di(p

�)

@pi
+ �(n� 1)�@Dk(p

�)

@pi
+ (n� 1)

�
�
@Di(p

�)

@pi
+ � (B � �) @Dk(p

�)

@pi

��
c0(Bx�)

= �
�
B
@Di(p

�)

@pi
+ (n� 1) [�� + � (B � �)] @Dk(p

�)

@pi

�
c0(Bx�)

= �
�
B
@Di(p

�)

@pi
+ �(n� 1)B@Dk(p

�)

@pi

�
c0(Bx�)

= �B
�
@Di(p

�)

@pi
+ �(n� 1)@Dk(p

�)

@pi

�
c0(Bx�).

Assumptions A.2 and v < 0 imply that # < 0.�

By totally di¤erentiating the FOCs with respect to � and solving for @p�=@� and @x�=@�

we obtain:
@p�

@�
=
1

�

�
@�xi�i

�
@xipi�i + (n� 1)@xjpi�i

�
� @�pi�i�x

	
(67)

and
@x�

@�
=
1

�

�
@�pi�i

�
@xipi�i + (n� 1)@pjxi�i

�
� @�xi�i�p

	
. (68)

To obtain sign f@x�=@�g and sign f@p�=@�g we next derive in turn each of the expressions

contained in equations (67) and (68). After some manipulations we can establish:

@xipi�i + (n� 1)@xjpi�i = �Bv�c0(Bx�),

@xipi�i + (n� 1)@pjxi�i = ��vc0(Bx�).

We also have that

@�xi�i = �(n� 1)c0(Bx�)�q� � 0,

@�pi�i = (n� 1)(p� � c(Bx�))
@Dk(p

�)

@pi
> 0.

Finally, we need the expressions for �p (the expression for �x is given by (65)). Recall that

�p � @pipi�i + (n� 1)@pipj�i. By di¤erentiating and evaluating in the symmetric equilibrium,

we obtain

@pipi�i = 2
@Di(p

�)

@pi
+ (p� � c(Bx�))

�
@2Di(p

�)

@p2i
+ �(n� 1)@

2Dk(p
�)

@p2i

�

and, using that in the symmetric equilibrium @Di=@pj = @Dj=@pi and @2Di=@pj@pi = @2Dj=@pj@pi,

@pipj�i = (1 + �)
@Di(p

�)

@pj
+ (p� � c(Bx�))

�
(1 + �)

@2Di(p
�)

@pj@pi
+ �(n� 2)@

2Dk(p
�)

@pj@pi

�
. (69)
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Thus,

�p = v + v� �
q�

v�
(n� 1)

�
1

n� 1
@2Di(p

�)

@p2i
+ �

@2Dk(p
�)

@p2i
(70)

+

�
(1 + �)

@2Di(p
�)

@pj@pi
+ �(n� 2)@

2Dk(p
�)

@pj@pi

��
.

Therefore,

� = ��p
�
c00(Bx�)q��B + �00(x�)

�
� �Bvv�

�
c0(Bx�)

�2 .
Under regularity condition � > 0, then:

sign

�
@x�

@�

�
= sign

�
� (p� � c(Bx�)) @Dk(p

�)

@pi
v � �q��p

�
(71)

and

sign

�
@p�

@�

�
= sign

�
�(n� 1)c0(Bx�)�q�

�
�Bv�c0(Bx�)

�
� (n� 1)(p� � c(Bx�))@Dk(p

�)

@pi
�x

�
,

thus

sign

�
@p�

@�

�
= sign

�
�B�q�v�c0(Bx�) + (p� � c(Bx�))

@Dk(p
�)

@pi

�x
c0(Bx�)

�
. (72)

Clearly, from (71) and (72), and in line with the Cournot oligopoly model: for � = 0, @x�=@� < 0

and @p�=@� > 0. Let P 0(c) be the cost pass-through coe¢ cient P 0(c) � dp�=dc; for � > 0 we

can establish the analogous to Lemmata 1 and 2:

LEMMA B2 In the symmetric equilibrium

sign

�
@x�

@�

�
= sign

�
� � P 0(c) jvj

v2�
�
@Dk(p

�)

@pi

�
, (73)

where P 0(c) = v�=�p > 0, and

sign

�
@p�

@�

�
= sign fH � �Bg , (74)

where

H =
@Dk(p

�)=@pi

(v�c0(Bx�))
2

�
�c

00(Bx�)B�0(x�)

c0(Bx�)
+ �00(x�)

�
. (75)

Proof. Inserting the FOC with respect to the price, p�� c(Bx�) = �q�=v�, into (71) yields

sign f@x�=@�g = sign
�
�� @Dk(p

�)

@pi

�
v

v�

�
� ��p

�
.

By computing the total derivative of @�i=@pi = 0 with respect to the cost c, we obtain P
0(c) =
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v�=�p, and therefore (73). Using again the FOC: p�� c(Bx�) = �q�=v�, and equation (65), we

get

sign

�
@p�

@�

�
= sign

�
�B�v�c0(Bx�)�

1

v�c0(Bx�)

@Dk(p
�)

@pi

�
�c00(Bx�)q� (�B)� �00(x�)

��
.

Noting that the FOC with respect to R&D investment can be re-written as q� = �0(x�)=(�c0(Bx�)�),

and using that v�c0(Bx�) > 0, we have

sign

�
@p�

@�

�
= sign

�
�B + 1

� (v�c0(Bx�))
2

@Dk(p
�)

@pi

�
�c

00(Bx�)B�0(x�)

c0(Bx�)
+ �00(x�)

��
:

As in the Cournot oligopoly model we de�ne the functionH for Bertrand competition with di¤er-

entiated products as shown in equation (75). Thus, in the symmetric equilibrium: sign f@p�=@�g =

sign fH � �Bg.�

In Cournot we showed that sign f@q�=@�g = sign f�B �Hg. The reverse of the terms inside

the curly brackets is explained by the di¤erent type of competition (price/output competition)

in the two models. Assuming that �00 > 0, we can rewrite H as follows:

H =
@Dk(p

�)=@pi

(v�c0(Bx�))
2 �

00(x�)

�
�c

00(Bx�)Bx�

c0(Bx�)

�0(x�)

�00(x�)x�
+ 1

�
. (76)

By de�ning, as we did in the Cournot model, �(Bx�) � �c00(Bx�)Bx�=c0(Bx�) � 0, y(x�) �

�00(x�)x�=�0(x�) � 0,

�(q�; x�) � (v�c
0(Bx�))2

@Dk(p�)
@pi

�00(x�)
> 0,

and by replacing these terms into (76) we get

H =
1

�(q�; x�)

�
1 +

�(Bx�)

y(x�)

�
.

Note that the only di¤erence with respect to the Cournot model is that here the expression

for the relative e¤ectiveness of R&D (�) takes into account the fact that products are now

di¤erentiated. In Cournot: � = �(c0(Bx�))2=(f 0(Q�)�00(x�)); in Bertrand with di¤erentiated

products, however, the term (f 0)�1 is replaced by v� 2 (@Dk(p�)=@pi)
�1.

We can proceed as in the Cournot model and de�ne the corresponding three regions: RI,

where @p�=@� > 0 and @x�=@� � 0; RII where @p�=@� > 0 and @x�=@� > 0; RIII where

@p�=@� < 0 and @x�=@� > 0.

Regarding RI, because of gross substitutes (@Dk(p�)=@pi > 0), we can have @x�=@� < 0

for all � (73). This is the case when ��p < � (@Dk(p
�)=@pi) v=v�. Regarding the spillover
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threshold between RII and RIII, note that here, as in Cournot, Assumption A.4 implies that

the equation H � �B = 0 has a unique positive solution, which again we may denote by �0.

It follows that for � > �0, @p�=@� < 0. Furthermore, RIII exists (because the threshold �0 is

strictly lower than 1) when n > H(1).

B.2.2 Welfare analysis

Welfare (with quasilinear utility) at a symmetric equilibrium is given by

W = U(q�)� c(Bx�)nq� � n�(x�),

where q� is the equilibrium output vector and U is the utility of a representative consumer,

assumed to be smooth and strictly concave (i.e., with a negative de�nite Hessian). By di¤eren-

tiating with respect to �:

W 0(�) =

�P
i

@U(q�)

@qi
� nc(Bx�)

�
@q�

@�
�
�
nc0(Bx�)Bq� + n�0(x�)

� @x�
@�
.

From the maximization problem of the consumer: pi = @U(q�)=@qi, so

W 0(�) = (p� � c(Bx�))n@q
�

@�
�
�
nc0(Bx�)Bq� + n�0(x�)

� @x�
@�
.

From the FOC with respect to price: p� � c(Bx�) = �q�=v�, and from the FOC with respect

to R&D investment: �0(x�) = �c0(Bx�)q�� , thus

W 0(�) = � q
�

v�
n
@q�

@�
�
�
nc0(Bx�)Bq� � nc0(Bx�)q��

� @x�
@�

= � q
�

v�
n
@q�

@�
� nc0(Bx�)q�(B � �)@x

�

@�
.

From the demand de�nition, q� = Di(p
�(�)) we have that @q�=@� = v (@p�=@�). Using that

B � � = (1� �)�(n� 1), we �nally may write

W 0(�) = �
�
v

v�

@p�

@�
+ (1� �)�(n� 1)c0(Bx�)@x

�

@�

�
nq�. (77)

Thus,

� in RI, where @x�=@� � 0 and @p�=@� > 0 (so @q�=@� < 0): W 0(�) < 0.

� in RII, where @x�=@� > 0 and @p�=@� > 0 (so @q�=@� < 0): W 0(�) 7 0.

� in RIII, where @x�=@� > 0 and @p�=@� < 0 (so @q�=@� > 0): W 0(�) > 0.
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From (67), it follows that

@p�

@�
=
(n� 1)q�

�

��
c0(Bx�)

�2
�Bv� �

@Dk(p
�)=@pi
v�

�
c00(Bx�)q�B� + �00(x�)

��
. (78)

Similarly, from (68), after some manipulations, we obtain

@x�

@�
=
(n� 1)q�(�c0(Bx�))

�

@Dk(p
�)

@pi

24�
0@ �p

�@Dk(p�)
@pi

1A� v

v�
�

35 . (79)

By inserting (78) and (79) into (77) we obtain

W 0(�) =
(n� 1)n q� 2

�

@Dk(p
�)

@pi
z (80)

where

z � (c0(Bx�))2 �B(�v)
@Dk(p�)=@pi

+
v

v� 2
�
c00(Bx�)q�B� + �00(x�)

�
(81)

+
�
c0(Bx�)

�2
(1� �)�(n� 1)

�
� (��p)

@Dk(p�)=@pi
� v

v�
�

�
.

Remark B1. Consider the case of independent products, @Dk(p�)=@pi = 0. If the local

monopoly problem is well-de�ned we have: (i) if � > 0, then �oTS = �oCS = 1, whereas (ii) if

� = 0, then � has no impact on total surplus or consumer surplus.

Proof. It follows immediately from equation (71) that sign f@x�=@�g > 0 for � > 0 and

@x�=@� = 0 for � = 0. Similarly, from equation (72): sign f@p�=@�g < 0 (or equivalently

sign f@q�=@�g > 0) for � > 0, while @p�=@� = @q�=@� = 0 for � = 0. Using (77), W 0(�) > 0 for

all � if � > 0, thus �oTS = 1. Since sign fCS0(�)g = sign f@q�=@�g, we also have that �oCS = 1. If

� = 0, clearly from (77), W 0(�) = 0; note that for @Dk(p�)=@pi = � = 0, FOCs do not depend

on �.�

B.3 Two-stage model

We �rst derive the FOCs and the expression for ~�(�) for the Bertrand case. We then discuss

the strategic e¤ect and welfare in Bertrand with two stages.

Interior equilibrium and threshold ~�(�). Let

' � �@Di(p
�)

@pi
@pipi�i + �

@Dk(p
�)

@pi

�
(n� 1)@pipj�i � (n� 2)@pipi�i

�
.
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Then, using (36) we can write:

@

@xi
p�j (x) =

�c0(Bx)



(�')
�
~�(�)� �

�
, (82)

where


 �
�
@pipi�i � @pipj�i

� �
@pipi�i + (n� 1) @pipj�i

�
(83)

and

~�(�) =
1

(�')

�
@Di(p

�)

@pi
@pipj�i � �

@Dj(p
�)

@pi
@pipi�i

�
. (84)

The denominator of ~�(�) is positive since ' < 0:

' � �@Di(p
�)

@pi
@pipi�i + �

@Dk(p
�)

@pi

�
(n� 1)@pipj�i � (n� 2)@pipi�i

�
(85)

= �@Di(p
�)

@pi
@pipi�i + �

@Dk(p
�)

@pi

�
@pipi�i + (n� 1)@pipj�i

�
� �@Dk(p

�)

@pi
(n� 1)@pipi�i

= �
@Dk(p

�)

@pi
�p � @pipi�i

�
@Di(p

�)

@pi
+ �(n� 1)@Dk(p

�)

@pi

�
< 0.

Therefore, if
@Di(p

�)

@pi
@pipj�i � �

@Dj(p
�)

@pi
@pipi�i < 0 (86)

then ~�(�) < 0. Condition (86) is satis�ed in the case of linear and constant elasticity demand

with di¤erentiated products (see analysis below).

Finally, note that in Bertrand at the symmetric equilibrium FOCs boil down to

q� + (p� � c(Bx�))v� = 0 (87)

and

�c0(Bx�)�q� � �0(x�) + (n� 1)@�i
@pj

�
@p�j
@xi

�
= 0. (88)

Strategic e¤ect. The strategic e¤ect is

 (x) � (n� 1) @
@pj

�i(p
�(x);x)

@

@xi
p�j (x). (89)

Next we show that @�i=@pj is strictly positive for � < 1. We then show that @p
�
j=@xi < 0 with

strategic complements price competition and � high enough, and as a result the strategic e¤ect

is negative.
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We can write the FOC with respect to R&D as

@

@xi
�i(p

�(x);x; �) + (n� 1) @
@pj

�i(p
�(x);x; �)

@

@xi
p�j (x) = 0,

and

@

@pj
�i(p

�(x);x; �) = (p� � c(Bx)) @Di(p
�)

@pj
+ �

�
q� + (p� � c(Bx)) @Dj(p

�)

@pj

�
+�(n� 2)(p� � c(Bx))@Dk(p

�)

@pj
,

which can be rewritten as

@

@pj
�i(p

�(x);x; �) =
�q�
v�

�
@Di(p

�)

@pj
+ �

@Dj(p
�)

@pj
+ �(n� 2)@Dk(p

�)

@pj

�
+ �q�, (90)

where we have used the FOC: (p� � c(Bx)) = �q�=v�. To show that @�i(p�(x);x; �)=@pj > 0,

we rewrite (90) as follows:

@

@pj
�i(p

�(x);x; �) =
�q�
v�

�
@Di(p

�)

@pj
+ �

@Dj(p
�)

@pj
+ �(n� 2)@Dk(p

�)

@pj
� �v�

�
=

�q�
v�

�
@Di(p

�)

@pj
+ �

@Dj(p
�)

@pj
+ �(n� 2)@Dk(p

�)

@pj

��
�
@Di(p

�)

@pi
+ �(n� 1)@Dk(p

�)

@pi

��
.

Using now that in the symmetric equilibrium @Di=@pi = @Dj=@pj and @Di=@pj = @Dk=@pj =

@Dk=@pi for i 6= j, j 6= k, i 6= k we can rewrite the above expression as follows

@

@pj
�i(p

�(x);x; �) =
�q�
v�

�
1 + � (n� 2)� �2 (n� 1)

� @Di(p�)
@pj

(91)

=
�q�
v�

(1� �) �@Di(p
�)

@pj
> 0 for � < 1.

We now show that @2�i=@xj@pi is negative or positive depending on whether � is high or

low. Note that:

@2�i
@xi@pi

(x) = �c0(Bx)
�
@Di(p

�)

@pi
+ � (n� 1)�@Dk(p

�)

@pi

�
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and

@2�i
@xj@pi

(x) = �c0(Bx)
�
�
@Di(p

�)

@pi
+ �

@Dj(p
�)

@pi
+ � (n� 2)�@Dk(p

�)

@pi

�
= �c0(Bx)

�
�

�
@Di(p

�)

@pi
+ �(n� 1)�@Dk(p

�)

@pi

�
+ (1� �)�@Dk(p

�)

@pi

�
.

Therefore, @2�i=@xj@pi < 0 for � high enough. From (36), we have

@

@xi
p�j (x) =

1




�
@xipi�i@pipj�i � @xhpi�i@pipi�i

�
,

where in the symmetric equilibrium, and using that p� � c(Bx) = �q�=v�,

@pipi�i(x) = 2
@Di(p

�)

@pi
+

�
�q�
v�

��
@2Di(p

�)

(@pi)
2 + �(n� 1)@

2Dk(p
�)

(@pi)
2

�

and

@pipj�i(x) =
@Di(p

�)

@pj
+

�
�q�
v�

��
(1 + �)

@2Di(p
�)

@pj@pi
+ �(n� 2)@

2Dk(p
�)

@pj@pi

�
+ �

@Dj(p
�)

@pi
. (92)

Strategic complements price competition @pipj�i(x) > 0, together with the assumption �p <

0, both imply that 
 > 0. Note also that the assumption v < 0 implies @2�i=@xi@pi < 0, and

since the expression for @2�i=@xj@pi becomes negative for � high enough, we can establish:

@p�j
@xi

< 0 with strategic complements price competition and � high enough,

in which case the strategic e¤ect is negative and �rms adopt a "puppy dog" strategy (Fudenberg

and Tirole 1984): increasing xi decreases the prices of rivals because a larger xi shifts the price

best reply of �rm j inwards as @2�j=@xi@pj < 0 and also shift inwards the price best reply of

�rm i since @2�i=@xi@pi < 0. The result is that the strategic e¤ect is negative ( < 0) and we

have puppy dog investment incentives.

Welfare. From our previous analysis:

W 0(�) = (p� � c(Bx�))n@q
�

@�
�
�
nc0(Bx�)Bq� + n�0(x�)

� @x�
@�
.

The FOC with respect to x is

�0(x�) = �c0(Bx�)
h
� + (n� 1)!(�)

�
~�(�)� �

�i
q�. (93)
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Inserting the FOCs p� � c(Bx�) = �q�=v� and (93) into the expression for W 0(�) we obtain:

W 0(�) =

�
� 1

v�

@q�

@�
�
h
(1� �)� � !(�)

�
~�(�)� �

�i
(n� 1) c0(Bx�)@x

�

@�

�
nq�. (94)

In Cournot when the strategic e¤ect is negative (i.e.,
�
~�(�)� �

�
< 0) , the sign of the impact of

� on welfare in each region (RI, RII and RIII) is the same in the simultaneous and the two-stage

model. This is the case also with Bertrand competition and � high (puppy dog strategy).

B.4 Model speci�cations

In this section we characterize the model with linear and constant elasticity demands analogs

to AJ and CE. For each case, we �rst consider the simultaneous and then the two-stage model.

B.4.1 Linear model

Model speci�cation: main assumptions. We assume the following: Di(p) = a � bpi +

m
P
j 6=i pj with a; b;m > 0; this linear direct demand obtains from a representative consumer

with the following symmetric and strictly concave quadratic utility function:

U(q) = u1
nP
i=1

qi �
1

2

 
u2

nP
i=1

q2i + 2u3
P
j 6=i

qiqj

!
,

with u2 > u3 > 0, u1 > 0, and where

a =
u1

u2 + (n� 1)u3
,

b =
u2 + (n� 2)u3

[u2 + (n� 1)u3] (u2 � u3)

and

m =
u3

[u2 + (n� 1)u3] (u2 � u3)
.

(See Vives 1999, pp. 146-147.)

The innovation function of �rm i is ci = �c � xi � �
P
j 6=i xj and the cost of investing x in

R&D is given by �(x) = (
=2)x2. Linear demand satis�es Assumption 1B, the innovation and

investment functions satisfy Assumptions A.2 and A.3. Under this model speci�cation, we have

v = �b + (n � 1)m, and v� = �b + �(n � 1)m. According to the above analysis, we impose:

v < 0, i.e. b > (n� 1)m.
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Simultaneous model. Interior equilibrium. By solving the FOCs and using that in the

symmetric equilibrium q� = a+ vp�, we derive the symmetric interior equilibrium:

p� =
v� (Ba� � �c
) + a


�

and

x� =
�(�v�) (�cv + a)

�
.

Second-order, stability and regularity conditions. It is straightforward to obtain that

�x = �
, �p = v + v� = �2b+ (n� 1)m(1 + �), and � = �(v + v�)
 � vv�B� .

Because demand is linear, the regularity condition �p < 0 is implied by the assumption v <

0. We thus only have to impose the second regularity condition (64), therefore we assume

�(v + v�)
 > vv�B� . Second order conditions are: @pipi�i = �2b < 0, @xixi�i = �
 < 0 and

@pipi�i(@xixi�i)� (@xipi�i)2 > 0, which is equivalent to 2
b > [�b+ �(n� 1)�m]
2.

Table B1: Linear Bertrand Model

Demand Di(p) = a� bpi +m
P
j 6=i pj

ci = �c� xi � �
P
j 6=i xj

�(x) = (
=2)x2

v = �b+ (n� 1)m
v� = �b+ �(n� 1)m
S.O.C 
b > [�b+ �(n� 1)�m]2 =2
Regularity Condition [� (v + v�) =vv�] 
 > B�

Comparative statics on � and spillover thresholds. Recall that only RI exits if

��p < (@Dk(p�)=@pi) �(v=v�), i.e., if

� (v + v�) < m�

�
v

v�

�
, (95)

otherwise we can identify RII and RIII by deriving the corresponding spillover threshold. From

(73):

sign

�
@x�

@�

�
= sign

n
�
h
� (v + v�)

v�
v
� �(n� 1)m

i
�m

o
.

Therefore,

if � � � (�) � m [b� (n� 1)m]
�(n� 1)2(�+ 2)m2 � 4b (�+ 1=4) (n� 1)m+ 2b2

, (96)
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then @x�=@� � 0 and @p�=@� > 0 (RI). It is easy to see that � (�) depends only on m=b and

that it is hump-shaped in m=b (with � (�) = 0 for m=b = 0 and for m=b = 1= (n� 1)).

Note that � = 0, y = 1 and � = �[b��(n�1)m]2
m
 , so

H =
m


[b� �(n� 1)m]2
. (97)

Since v� < 0, H is strictly increasing in �. Thus,

sign

�
@p�

@�

�
= sign fH � �Bg .

It follows that:

�0 =
�1 +

p
4H(n� 1) + 1
2(n� 1) . (98)

As H is strictly increasing in , so is �0 (in AJ and KMZ �0 is independent of �).

Figures B1a and B1b depict the spillover thresholds and the three regions. The threshold

for RI and RII is given by (96), whereas the threshold for RII and RIII is given by (98). For

illustrative purposes we consider two cases that only di¤er in the number of �rms. In Figure

B1a, n = 8, and condition (95) is not satis�ed for any value of � if � is su¢ ciently high,

and consequently RII and/or RIII exist. In Figure B1b, n = 10, and condition (95) holds for

� > 0:882. Thus, for � su¢ ciently high, only RI exists irrespective of the spillover level.

Spillover thresholds and regions RI, RII and RIII8

Fig. B1a. Linear Bertrand model.

(n = 8)

Fig. B1b. Linear Bertrand model.

(n = 10)

Comparative statics on �0. Straightforward calculations show that the threshold �0(�) is

strictly decreasing in b and strictly increasing in 
. These results are in line with the Cournot

model.9 We also obtain that �0(�) is strictly increasing in the slope of the direct demand

8All simulations are conducted for a = 700, �c = 600, b = 1:4, m = 0:12 and 
 = 70.
9 In Cournot �0(0) is strictly increasing in b (see Table A3); recall that b is the (absolute value of the) slope of
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with respect to rival prices, m. This follows since H has the same properties. However, H is

increasing in u3=u2 for u3=u2 low (local monopolies) and decreasing in u3=u2 for u3=u2 close

to 1 (homogenous products). Therefore �0(�) is non-monotone in u3=u2. It can also be showed

that as in AJ and the CE model, �0(0) is strictly decreasing in n (the threshold does not depend

on n in KMZ), and therefore in terms of consumer surplus it is optimal to suppress overlapping

ownership for any level of spillovers when �rm entry is insu¢ cient. In particular, this is the case

in Bertrand with linear demand when n < m
=b2, in which case �0(0) > 1. More generally, the

sign of @�0(�)=@n for some � 2 (0; 1) depends on the level of � and n. Numerical simulations

show that for low or moderate values of �, @�0(�)=@n < 0, whereas for high �, @�0(�)=@n > 0

if n is su¢ ciently high.10

PROPOSITION BL1 Under the linear demand speci�cation, if � (v + v�) < m� (v=v�) then

only region RI exists. Otherwise, assume n > H(1), where H is given by (97), and let � (�)

and �0 be given, respectively, by (96) and (98). Then the following statements hold :

(i) if � � � (�) ; then @q�

@� < 0 and @x�

@� � 0 (RI);

(ii) if � (�) < � � �0 (�) ; then @q�

@� � 0 and
@x�

@� > 0 (RII);

(iii) if � > �0 (�) ; then @q�

@� > 0 and @x�

@� > 0 (RIII).

We have that both � (�) and �0 (�) are increasing in � and hump-shaped in u3=u2, and @�0(0)=@n <

0.

Pro�t. Simulations show that also in Bertrand with di¤erentiated products and linear

demand, pro�t in equilibrium is strictly increasing in the degree of overlapping ownership:

��0(�) > 0.

Welfare. First, we derive the threshold, ��, above which welfare increases with � starting

from � = 0. We obtain �� from the condition W 0(0) > 0. Using (80), we only have to solve

zj�=0 = 0 for � to obtain the expression for ��. In particular, we have to solve

��Bv
m

+
v

v� 2

 � � (n� 1)

�
� (�b+ v)

m
+

v

v�

�
= 0,

or, equivalently,

v�
2 (n� 1)(b� 2v)�2 � v�v [v� +m(n� 1)]� + v
m = 0.

the inverse demand in Cournot, while it is the slope of the direct demand with respect to own price in Bertrand.
10For example, for b = 1:5, m = 0:1 and 
 = 60, @�0(�)=@n < 0 for n = 2:5, but @�0(�)=@n > 0 for n = 6 and

� > 0:87.
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The above equation has two roots, only one of them can be positive since the denominator of

the roots is �2b(n� 1)(b� 2v) < 0. Thus, �� is given by

�� =
v 2 �

p
v fv(n� 1)2m2 + 2 [(4
 � b) v � 2b
] (n� 1)m+ b2vg

�2b(n� 1)(b� 2v) .

Numerical simulations con�rm that the spillover thresholds satisfy �0(0) > ��.

Table B2: H and Spillover Thresholds in Linear Bertrand Model

H = m
= [b� �(n� 1)m]2
� (�) = m [b� (n� 1)m] =

�
�(n� 1)2(�+ 2)m2 � 4b (�+ 1=4) (n� 1)m+ 2b2

�
�� =

�
v 2 �

p
v fv(n� 1)2m2 + 2 [(4
 � b) v � 2b
] (n� 1)m+ b2vg

�
= [�2b(n� 1)(b� 2v)]

�0 =
�
�1 +

p
4H(n� 1) + 1

�
= [2(n� 1)]

Comparative statics on ��. As in Cournot (in AJ, KMZ and CE), the threshold �� decreases

with n. Similarly and in line with Cournot: �� decreases with the slope of demand and increases

with the parameter of the slope for the investment cost, 
. Regarding product di¤erentiation:

�� is hump-shaped in u3=u2 since �� = 0 both for u3=u2 = 0 and u3=u2 = 1. Finally, also in

Bertrand �� may take values greater than 1 (so �oTS = 0 irrespective of the value of �) when there

are a few �rms in the market and 
 (b) are su¢ ciently high (low). Note that in Figures B2a-c

we assume that parameters a; b and m are �xed as n changes. This implies that parameters

u1, u2 and u3 must change with n (see Section B.4.1). Alternatively, we assume in Figure B2d

that parameters u1, u2 and u3 are �xed (such that a = 750, b = 1:5 and m = 0:1 for n = 8),

while a, b and m change with n. Results are qualitatively the same: the thresholds in B2a and

B2d are almost the same for n equal or close to 8, while they are higher in B2d than in B2a for

two or three �rms in the market.
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Threshold value ��

Fig. B2a. Linear Bertrand model.

(b = 1:5, m = 0:1)

Fig. B2b. Linear Bertrand model.

(
 = 60, m = 0:1)

Fig. B2c. Linear Bertrand model.

(b = 1:5, 
 = 60)

Fig. B2d. Linear Bertrand model.

(u1 = 937:5, u2 = 0:7 and u3 = 0:078)
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Optimal degree of overlapping ownership (TS and CS standard)11

Fig. B3a. Linear Bertrand model.

(
 = 50, n = 6)

Fig. B3b. Linear Bertrand model.

(
 = 50, n = 8)

Fig. B3c. Linear Bertrand model.

(
 = 80, n = 6)

Fig. B3d. Linear Bertrand model.

(
 = 80, n = 8)

Comparative statics on the socially optimal degree of overlapping ownership. Our simulations

con�rm that the main �ndings obtained in Cournot also hold in Bertrand; namely the socially

optimal level of overlapping ownership increases with the size of spillovers and with the number

of �rms. Secondly, while the comparative statics are qualitatively similar in terms of consumer

surplus, the scope for overlapping ownership is lower. Thirdly, Figures B3a-d show that for not

11All simulations are conducted for a = 700, b = 1:5, m = 0:1 and �c = 500.

57



too highly concentrated markets and high spillover levels, � = 1 can be optimal in terms of

total and consumer surplus. The thresholds �� and �0(0), as discussed above, decrease with n,

and the optimal degrees of overlapping ownership �oTS and �
o
CS, decrease with the parameter of

the slope for the investment cost, 
.

Optimal degree of overlapping ownership (TS and CS standard) 12

Fig. B4a. Linear Bertrand model.

(
 = 80, � = 0:2)

Fig. B4b. Linear Bertrand model.

(
 = 80, � = 0:4)

Fig. B4c. Linear Bertrand model.

(
 = 80, � = 0:6)

Fig. B4d. Linear Bertrand model.

(
 = 80, � = 0:8)

12All simulations are conducted for a = 750, b = 1:5, m = 0:1 and �c = 500.
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Fig. B4e. Linear Bertrand model.

(
 = 80, � = 0:2, u1 = 937:5, u2 = 0:7

and u3 = 0:078)

Fig. B4f. Linear Bertrand model.

(
 = 80, � = 0:4, u1 = 937:5, u2 = 0:7

and u3 = 0:078)

Fig. B4g. Linear Bertrand model.

(
 = 80, � = 0:6, u1 = 937:5, u2 = 0:7

and u3 = 0:078)

Fig. B4h. Linear Bertrand model.

(
 = 80, � = 0:8, u1 = 937:5, u2 = 0:7

and u3 = 0:078)

Finally, as Figures B4a-d indicate, it is not optimal to allow overlapping ownership for

highly concentrated markets. As in the case of output competition, �oTS increases weakly with

the number of �rms, and as in AJ and CE, �oCS increases weakly with the number of �rms

and only if n is su¢ ciently large given the size of the spillover.13 In Figures B4a-d we keep

13Recall that in KMZ the threshold �0, and therefore signfCS0(�)g, are independent of the number of �rms.
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parameters a; b and m �xed as n changes, so parameters u1, u2 and u3 must change with n.

In Figures B4e-h, however, we allow parameters a, b and m to change with n by setting u1, u2

and u3 at values such that a = 750, b = 1:5 and m = 0:1 for n = 8. Results are qualitatively

the same in the two cases.
Optimal degree of overlapping ownership (TS and CS standard)14

Fig. B5a. Linear Bertrand model.

(� = 0, 
 = 150, n = 5)

Fig. B5b. Linear Bertrand model.

(� = 0:25, 
 = 150, n = 5)

Fig. B5c. Linear Bertrand model.

(� = 0:75, 
 = 150, n = 5)

Fig. B5d. Linear Bertrand model.

(� = 1, 
 = 150, n = 5)

Comparative statics on the degree of product di¤erentiation. Here, we �x u2 = 1, and we

then compute the optimal degrees of overlapping ownership (�oTS and �oCS) for values of u3
14All simulations are conducted for a = 700 and �c = 500.
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ranging from 0 (which re�ects the monopoly case) to 0:92 (which re�ects the case of intense

competition because of very low product di¤erentiation). To guarantee that the regularity

condition is satis�ed for u3 2 [0; 0:92] we consider n = 5 and 
 = 150. Simulations show that

for � > 0, �oTS is U-shaped, and so is �
o
CS is for � su¢ ciently high (see Figures B5a-d). For

� > 0, if u3 ! 0, then �oTS, �
o
CS ! 1. The U-shaped pattern is robust and also appears for

higher/lower values of n and 
. In particular, in Figures B6a-b we conduct similar simulations

but assuming n = 8 and 
 = 60.

Optimal degree of overlapping ownership (TS and CS standard)15

Fig. B6a. Linear Bertrand model.

(� = 0:1, 
 = 60, n = 8)

Fig. B6b. Linear Bertrand model.

(� = 0:9, 
 = 60, n = 8)

Two-stage model. Interior equilibrium. By solving the FOCs (87) and (88) with c =

�c�Bx� and q� = a+ vp�, we obtain the symmetric interior equilibrium:

p� =
f�c
 � a [(n� 1)s(�) + � ]Bg v� � a

f
 + v [(n� 1) s(�) + � ]Bg v� + v


and

x� =
v�(�cv + a) [(n� 1)s(�) + � ]

f
 + v [(n� 1)s(�) + �)]Bg v� + v

,

where s(�) � !(�)(~�(�)� �), and !(�) and ~�(�) are obtained below.

Strategic e¤ect. Here, we �rst obtain @p�j (x)=@xi, and we then derive the expressions

for the strategic e¤ect of investment ( ) and the threshold ~�(�). With linear demand we have

@xipi�i(x) = �c0(Bx) [�b+ � (n� 1)�m] and @xjpi�i(x) = �c0(Bx) [�b� + �m+ � (n� 2)�m].
15All simulations are conducted for a = 700 and �c = 500.
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We also have that @pipi�i(x) = �2b and @pipj�i(x) = m (1 + �). Therefore,

@pipi�i(x)� @pipj�i(x) = �2b�m(1 + �),

@pipi�i(x) + (n� 1)@pipj�i(x) = �2b+ (n� 1)m(1 + �),

@pipj�i(x)� @pipi�i(x)� = m (1 + �) + 2b�.

Using (36) we can write

@

@xi
p�j (x) =

�c0(Bx)



['(�)� � (1� �) bm] ,

where 
 = [�2b�m(1 + �)] [�2b+ (n� 1)m(1 + �)] > 0, and '(�) = � (1 + �) (n� 1)m2 +

2� (n� 2) bm � 2b2 < 0, since '(0) = �2b2 < 0, '(1) = 2(b + m) [�b+m(n� 1)] < 0 and

'0(�) > 0. Therefore,
@

@xi
p�j (x) < 0.

From (91) we may write

@

@pj
�i(p

�(x);x; �) =
�q�
v�

fm [1 + � (n� 2)]� b�g+ �q�

= � q
�

v�
m (1� �) �.

Note that (1� �)� is strictly positive for all � < 1, thus, and as expected, for � < 1:

@

@pj
�i(p

�(x);x; �) > 0.

Therefore, the strategic e¤ect of investment is

 � (n� 1)@�i
@pj

�
@p�j
@xi

�
= �(n� 1) q

�

v�
m (1� �) �

�
�c0(Bx)



['(�)� � (1� �) bm]
�

=
�c0(Bx)



�
� q

�

v�

�
m(n� 1) (1� �) � ['(�)� � (1� �) bm] < 0.

We can rewrite the strategic e¤ect of investment as

 = �c0(Bx)q�!(�)
�
~�(�)� �

�
,
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where

!(�) =
m(n� 1) (1� �) �'(�)


v�
> 0 and ~�(�) =

1� �
'(�)

bm < 0.

Welfare. The expression for W 0(�) is given by (94). Recall that in Cournot only when the

strategic e¤ect is negative, the sign of the impact of � on welfare in each region (RI, RII and

RIII) is the same in the simultaneous and the two-stage model. The reason is that the factor

that multiplies @x�=@� in the expression for W 0(�) is positive. When the strategic e¤ect is

positive and spillovers are low, the factor is negative and as a result, welfare decreases with � in

RII, and can increase or decrease with � in RI and in RIII. In the Bertrand model with linear

demand, the strategic e¤ect is always negative, and as in Cournot, the factor that multiplies

@x�=@� is positive. (Note also that �1=v� > 0.) Therefore, the sign of the impact of � on

welfare in each region (RI, RII and RIII) is the same in the simultaneous and the two-stage

model: W 0(�) < 0 when x� decreases and p� increases with � (as in RI), W 0(�) > 0 when x�

increases and p� decreases with � (as in RIII), and W 0(�) ? 0 when x� and p� increase with �

(as in RII).

The next �gures depict the threshold ��2SLB above which welfare increases with � at � = 0.
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Threshold value ��16

Fig. B7a. Linear Bertrand two-stage

model. (b = 1:5;m = 0:1)

Fig. B7b. Linear Bertrand two-stage

model. (m = 0:1; 
 = 60)

Fig. B7c. Linear Bertrand two-stage model.

(b = 1:5; 
 = 60)

Comparative statics on ��2SLB. Results are consistent with those obtained in Cournot and in

simultaneous Bertrand: the threshold ��2SLB increases with m and 
, and decreases with n and

with b. In addition, and in line with the other models, ��2SLB may be greater than 1 (and thus

�oTS = 0 for all �) when there are few �rms in the market and 
 (b) are su¢ ciently high (low).

16 In the three simulations: a = 900 and �c = 500.
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Optimal degree of overlapping ownership (TS and CS standard)17

Fig. B8a. Linear Bertrand two-stage

model. (
 = 50, n = 6)

Fig. B8b. Linear Bertrand two-stage

model. (
 = 50, n = 8)

Fig. B8c. Linear Bertrand two-stage

model. (
 = 80, n = 6)

Fig. B8d. Linear Bertrand two-stage

model. (
 = 80, n = 8)

Comparative statics on the socially optimal degree of overlapping ownership. Results are

similar to those obtained in Cournot with two stages: �oTS increases with � and n, and when

R&D has commitment value �oTS tends to be higher than in the simultaneous model when

spillovers are high. However and unlike the Cournot model, we do not observe cases in which

�oCS > �oTS. The reason is that those cases may arise in Cournot when the strategic e¤ect is

17All simulations are conducted for a = 900, b = 1:5, m = 0:1 and �c = 500.
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positive; in Bertrand with linear demand the strategic e¤ect is always negative. Finally, in line

with the simultaneous case, �oTS and �
o
CS decrease with 
. Note also that we do not have a

bang-bang solution for CS.

Optimal degree of overlapping ownership (TS and CS standard)18

Fig. B9a. Linear Bertrand two-stage

model. (
 = 80, � = 0:2)

Fig. B9b. Linear Bertrand two-stage

model. (
 = 80, � = 0:4)

Fig. B9c. Linear Bertrand two-stage

model. (
 = 80, � = 0:6)

Fig. B9d. Linear Bertrand two-stage

model. (
 = 80, � = 0:8)

Figures B9a-d con�rm that it is not optimal to allow overlapping ownership for highly

concentrated markets. In line with the other models, �oTS weakly increases with the number

of �rms, and �oCS increases weakly with n (only if n is su¢ ciently large given the size of the

18All simulations are conducted for a = 900, b = 1:5, m = 0:1 and �c = 500.
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spillover).

Optimal degree of overlapping ownership (TS and CS standard)19

Fig. B10a. Linear Bertrand two-stage

model. (
 = 60, � = 0:2)

Fig. B10b. Linear Bertrand two-stage

model. (
 = 60, � = 0:4)

Fig. B10c. Linear Bertrand two-stage

model. (
 = 60, � = 0:6)

Fig. B10d. Linear Bertrand two-stage

model. (
 = 60, � = 0:8)

19All simulations are conducted for a = 900, b = 1:5, m = 0:1 and �c = 500.
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B.4.2 Constant elasticity model

Model speci�cation: main assumptions. Consider the following form for the representative

consumer�s utility function

U =

�
nP
i=1

q�i

�1=�
q�0,

with � 2 (0; 1) and � > 0, and where q0 is the numéraire and qi is quantity for the variety i

of the di¤erentiated product. The consumer�s problem consists of maximizing U subject to the

budget constraint
Pn
i=0 piqi = Y , where Y is aggregate income. The demand functions resulting

from this problem are

Di(p) =
p
�1�1=�
iPn
j=1 p

�1=�
j

S,

where � = (1 � �)=� 2 (0;1), and S � Y=(1 + �) is the total spending on the di¤erentiated

product variants; the amount of numéraire is q0 = �S. Note that � = 1=(1� �) is the constant

elasticity of substitution between any two products. As � ! 1 (� ! 1), products become

perfect substitutes, while as �! 0 (� ! 1), products become independent.

The innovation function is ci = �(xi + �
P
j 6=i xj)

�� with �, � > 0, whereas the investment

cost function is �(xi) = xi. Thus, the innovation and investment functions satisfy Assumptions

A.2 and A.3. CE demand, as speci�ed, is not quasilinear, but it is smooth and downward

sloping, the demand system is symmetric and products are gross substitutes (Assumption 1B).

From Table B3, we get at the symmetric equilibrium

v� = � S

np�2
< 0, and v�� = �

(n� 1)(1� �) + �n
n2p�2�

S < 0.

Table B3: CE Demand Bertrand Basic Derivatives
for i 6= j; j 6= k; i 6= k

@Di(p
�)=@pi = � S

n2p�2� (n� 1 + n�)
@2Di(p

�)= @pi
2 = 2S

n3p�3�2

�
n2�2 + 3

2(n� 1)n�+
1
2(n� 2)(n� 1)

�
@Di(p

�)=@pj =
S

n2p�2�

@Di(p
�)= @pj

2 = � S
n3p�3�2 [(n� 2) + n�]

@2Di(p
�)=@pj@pi = � S

n3p�3�2 [(n� 2) + n�]
@2Di(p

�)=@pk@pj =
2S

n3p�3�2

Simultaneous model. Interior equilibrium. The FOCs in the symmetric solution are

given by (61) and (62):
p� � c(Bx�)

p�
=

1

�i � �(n� 1)�ik
;
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�c0(Bx�)q�� = �0(x�),

where �i = (n � 1 + n�)=n� and �ik = 1=n�. In the symmetric solution: Di = Dk = q� =

S=(np�), ci = �(Bx�)��, c0 = @ci=@xijxi=x� = ���(Bx
�)���1, and �0(x�) = 1; by solving the

system of FOCs for p� and x� we get the symmetric interior equilibrium:

x� =
��SA

Bn
(99)

p� =
�

A (��SA=n)�
, (100)

where

A = 1 +
�n

�� n(1 + �) =
n� �

n� � + n� > 0 for � < 1.

Table B4: CE Bertrand Model

Demand Di(p) = Sp
�1�1=�
i =

Pn
j=1 p

�1=�
j

ci = �(xi + �
P
j 6=i xj)

��

�(x) = x
v = �S=np�2
v� = �S [(n� 1)(1� �) + n�] =n2p�2�
S.O.C �n4�(n� �)~�(1 + �)(1 + �)� n2�A (�n+ n� �) [(1 + �)n� � ]2 > 0
Regularity Condition � < 1

with ~� = 1 + �(n� 1)�2.

Second-order, stability and regularity conditions. We �rst check the stability and

regularity conditions; using (65) and (70) and from Table B3 we obtain

�x = �(1 + �)
Bn

��SA
< 0,

�p = �
(1� �)(n� 1)

n2p�2�
S < 0 (101)

and

� = �p�x � �Bvv�
�
c0(Bx�)

�2
=

A
�
��SA
n

�2�
B

n�2���
(n� 1)(1� �) > 0

for � < 1.

Second order conditions are: (i) @pipi�i < 0; (ii) @xixi�i < 0; and (iii) @pipi�i (@xixi�i) �
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(@pixi�i)
2 > 0. Conditions (i) and (ii) are satis�ed:

@pipi�i = 2
@Di(p

�)

@pi
�
�
q�

vL

��
@2Di(p

�)

@p2i
+ �(n� 1)@

2Dk(p
�)

@p2i

�
(102)

= �
S1+2�

�
��
n

�2�
A2�+2(1� �)(1 + �)

�
n�1
n

�
[(1� �)(n� 1) + �n]��2 < 0

and

@xixi�i = �c00(Bx�)
�
1 + �(n� 1)�2

�
q� � �00(x�)

= �
�
1 + �

�

�
n

�SA

�
1 + �(n� 1)�2

�
< 0.

Using that

@pixi�i = �
�
��SA
n

��
A

�n��
[(n� 1)(1� ��) + n�] ,

we have that condition (iii) is satis�ed i¤

�
�
��SA
n

�2�
A

�2n4 [(n� 1)(1� �) + �n]�2�� fD � Eg > 0

whereD � A3 [(���+ �+ 1)n+ �� � 1]2 [(n� 1)(1� �) + �n] �S2�3 n2

(��SA)2
and E � n4�(1�

�)(n� 1)
�
1 + �(n� 1)�2

�
(1 + �)(1 + �). Therefore, the SOC reduces to

�n4�(n� �)~�(1 + �)(1 + �)� n2�A (�n+ n� �) [(1 + �)n� � ]2 > 0,

where ~� � 1 + �(n� 1)�2.

Comparative statics on � and spillover thresholds. Recall that only RI exits (irre-

spective of the spillover level) if ��p < (@Dk(p�)=@pi) �(v=v�); replacing terms and simplifying

the condition reduces to

�n(2�� n)� (n� 1)2(1� �)2 > 0, (103)

which holds for � = 1. If (103) does not hold, then we may identify RII and RIII by deriving

the corresponding spillover threshold. From (99) we have that

@x�

@�
=

2�S(n� 1)
Bn [n� � + �n]2

�
�
��
��

2

2
+ (1 + �)�� 1 + �

2

�
n+

(1� �)2
2

�
�(n� 1)� �n

2

�
,

which implies that

sign

�
@x�

@�

�
= sign

�
�

��
�2

2
� (1 + �)�+ 1 + �

2

�
n� (1� �)

2

2

�
(n� 1)� �n

2

�
.
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Therefore,

if � � � (�) � �n

(n� 1)
��
�2 + (1 + �)(1� 2�)

�
n� (1� �)2

	 , (104)

then @x�=@� � 0 and @p�=@� > 0 (RI). Simple calculations show that @� (�) =@� > 0. Since

d�=d� = �1=�2 < 0, we have that @� (�) =@� < 0. From (100) we obtain

@p�

@�
=

2�

(n� 1)(1� �)2
n

(n�1)(1��)�S�
n[�n+(n�1)(1��)]

o�
�
#CE,

where

#CE � (n� 1)
���

��
2

2
+ (�+ 1)�� 1 + �

2

�
n+

(1� �)2
2

�
�+

��n

2

�
� +

�n(1 + �)

2
.

It follows that

sign

�
@p�

@�

�
= sign f#CEg .

Consequently,

�0 =
�n(1 + �)

(n� 1)
���

�2 + (1 + �)(1� 2�)
�
n� (1� �)2

	
�� ��n

� . (105)

Using that �00 = 0 and by replacing p�; x�; @Dk(p�)=@pi; c0(Bx�), c00(Bx�) and �0(x�) into (75)

we obtain:

H =
n�(1 + �)�B

(n� �)� [n(1 + �)� �] . (106)

Note that sign f@p�=@�g = sign fH � �Bg, so by solving H ��B = 0 for � we obtain again the

expression for �0 given by (105).

Recall that CS0(�) > (<)0 i¤ � > (<)�0. The threshold �0 is strictly increasing in �:

@�0

@�
=
�n(1 + �)

(n� 1)
[�n(1 + 2�) + 2(1� �)(n� 1)�]���

�2 + (1 + �)(1� 2�)
�
n� (1� �)2

	
�� ��n

�2 > 0.
As a result, �oCS > 0 if � > �0(0), where

�0(0) =
�n(1 + �)

(n� 1) [(1 + �)n� 1]� .
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Spillover thresholds and regions RI; RII and RIII20

Fig. B11a. CE Bertrand model.

(n = 6, � = 0:5, � = 0:5)

Fig. B11b. CE Bertrand model.

(n = 10, � = 0:5, � = 0:5)

Fig. B11c. CE Bertrand model.

(n = 6, � = 0:2, � = 0:5)

Fig. B11d. CE Bertrand model.

(n = 10, � = 0:2, � = 0:5)

Fig. B11e. CE Bertrand model.

(n = 6, � = 0:5, � = 2=3)

Fig. B11f. CE Bertrand model.

(n = 10, � = 0:5, � = 2=3)

We depict the spillover thresholds and the three regions in Figures B11a-f. For illustrative

20All simulations are conducted for � = 1, Y = 20 and � = 0:05. Note that S = Y=(1 + �).
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purposes, we consider six cases that di¤er in n, � and �. In contrast to the linear demand case,

the condition under which only RI exists for all �, which is given by (103), always holds for �

close or equal to 1. For lower values of �, RII and/or RIII may exist for � su¢ ciently high. Fig.

11a-d show how area RIII (respectively, RII) increases (decreases) with �, and illustrate that

RIII increases with n. Finally, the comparison of Fig. B11a with B11e, and B11b with B11f,

display the increase of RIII with �.

Comparative statics on �0. Straightforward calculations show that �0(�) is strictly decreasing

in � and strictly increasing in �. Thus, @�0(�)=@� < 0. As in the linear demand case, �0(0) is

strictly decreasing in n. Therefore, if �0(0) > 1 for n = 2, which holds when � > �=2, then to

have �0(0) < 1, so that �oCS > 0 when � > �0(0), the number of �rms must be su¢ ciently high

such that

n >

2(1 + �)�+ �+ 2

rh�
�+ 1

2

�2
�+ �2 + �

i
�

2(1 + �)�
.

PROPOSITION BCE1 Under the CE demand speci�cation, if �n(2��n)�(n�1)2(1��)2 > 0

then only region RI exists. Otherwise, assume n > H(1), where H is given by (106), and let

� (�) and �0 be given, respectively, by (104) and (105). Then the following statements hold :

(i) if � � � (�) ; then @q�

@� < 0 and @x�

@� � 0 (RI);

(ii) if � (�) < � � �0; then @q�

@� � 0 and
@x�

@� > 0 (RII);

(iii) if � > �0; then @q�

@� > 0 and @x�

@� > 0 (RIII).

We have that � (�) and �0 (�) are increasing in � and decreasing in �, and @�0(0)=@n < 0.

Pro�t. By inserting equilibrium values into the pro�t function and simplifying, we obtain:

�(�) =
1

nB

�
n�B � ��(n� �)
(�+ 1)n� �

�
S.

Simulations show that also in Bertrand with CE demand, pro�t in equilibrium is strictly in-

creasing in the degree of overlapping ownership: ��0(�) > 0.

Utility. Note that the indirect utility function in not linear in income. Thus, to solve the

�rst-best problem we have to maximize the utility function subject to the resource constraint:

Y =
Pn
i=1 ciqi +

Pn
i=1 �(xi) + q0. At the symmetric equilibrium the utility function with this

constraint included is

V (�) = n1=�q� (Y � nc(Bx�)q� � nx�)� ,
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where Y = S(1 + �). Computing V 0(�) and using the FOC 1 = �c0(Bx�)�q�, after some

manipulations we can write

V 0(�) = n1=�%��1
�
[S(1 + �)� nc(Bx�)q�(1 + �)� nx�] @q

�

@�
� c0(Bx�)�(n� 1)(1� �)�nq�2 @x

�

@�

�
,

where % � S(1 + �)� nc(Bx�)q� � nx�.

We now may obtain the threshold �� from the condition W 0(0) > 0. In particular, the

equation W 0(0) = 0 is quadratic in �, and writes as #1�2 + #2� + #3 = 0, where

#1 � � [(�+ 1)n� 1] (n� 1)2
�
S��(n� 1)2Z�1 + [(�+ 1)n� 1]n(1 + �)n�

	
,

#2 � �n(n� 1)
�
� [(�+ 1)n� 1] (1 + �) [�(n� 1)�+ n�] (n� 1) + S��2�(n� 1)2Z�1

+ [(�+ 1)n� 1]2
�
(n� 1)�2 � (1 + �)(n� 1)�+ n�(1 + �)

�o
,

and

#3 � �n2�(�+ 1) [(�+ 1)n� 1] f[(1 + �)�� �]n+ �g ,

with

Z � �S(n� 1)
[(�+ 1)n� 1]n .

The threshold �� is given by the positive root:

�� =
�#2 +

q
#22 � 4#1#3
2#1

.

Table B5: H and Spillover Thresholds in CE Bertrand Model

H = n�(1 + �)�B= f(n� �)� [n(1 + �)� �]g
� (�) = �n=

�
(n� 1)

��
�2 + (1 + �)(1� 2�)

�
n� (1� �)2

	�
�� =

�
�#2 +

q
#22 � 4#1#3

�
= (2#1)

�0 = �n(1 + �)=
�
(n� 1)

���
�2 + (1 + �)(1� 2�)

�
n� (1� �)2

	
�� ��n

��
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Threshold value ��

Fig. B12a.CE Bertrand model. Fig. B12b. CE Bertrand model.

Comparative statics on ��. We observe in Fig. 12a,b that �� decreases with � and �. The

threshold as in the previous cases decreases with n and may take values greater than 1 (so

�oTS = 0 irrespective of the value of �) when there are few �rms in the market. Note that we

use notation �oTS with subscript TS even though we refer to utility V .

Comparative statics on the socially optimal degree of overlapping ownership. Simulation

results are in line with previous �ndings: the socially optimal level of overlapping ownership

increases with the size of spillovers (see Figures B13a-d) and with the number of �rms (see

Figures B14a-d).
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Optimal degree of overlapping ownership (TS and CS standard)21

Fig. B13a. CE Bertrand model.

(� = 0:5, � = 0:5, n = 6)

Fig. B13b. CE Bertrand model.

(� = 0:5, � = 0:5, n = 8)

Fig. B13c. CE Bertrand model.

(� = 0:75, � = 0:5, n = 6)

Fig. B13d. CE Bertrand model.

(� = 0:5, � = 2=3, n = 6)

21All simulations are conducted for � = 1, Y = 20 and � = 0:05.
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Optimal degree of overlapping ownership (TS and CS standard)22

Fig. B14a. CE Bertrand model.

(� = 0:5; � = 2=3, � = 0:2.)

Fig. B14b.CE Bertrand model. (� = 0:5;

� = 2=3, � = 0:4.)

Fig. B14c. CE Bertrand model.

(� = 0:5; � = 2=3, � = 0:6.)

Fig. B14d. CE Bertrand model.

(� = 0:5; � = 2=3, � = 0:8.)

Comparative statics on the degree of product di¤erentiation. In Fig. B15a-d we depict the

optimal degree of overlapping ownership �oTS for � 2 (0; 1); if � ! 0+, then products tend to

be independent, while if � ! 1�, then products tend to be perfect substitutes. The grey area

represents the values for � and � where the interior (regular) equilibrium exists.23 Simulations

22All simulations are conducted for � = 1, Y = 20 and � = 0:05.
23That is, the second-order condition holds, and pro�t, cost, price, output and R&D are positive. (The

regularity condition holds for � < 1.)
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show that for � > 0, �oTS increases towards 1 when � ! 1. However, �oTS is not U-shaped; the

reason is that the monopoly case is not well de�ned with CE demand: when �! 0, the price p

tends to in�nity, and therefore the output q tends to zero.

Optimal degree of overlapping ownership24

Fig. B15a. CE Bertrand model.

(� = 0:5, � = 0:25, n = 6)

Fig. B15b. CE Bertrand model.

(� = 0:5, � = 0:5, n = 6)

Fig. B15c. CE Bertrand model.

(� = 0:5, � = 0:75, n = 6)

Fig. B15d. CE Bertrand model.

(� = 0:5, � = 1, n = 6)

24All simulations are conducted for � = 1, Y = 20 and � = 0:05.
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Two-stage model. Interior equilibrium. The interior equilibrium is characterized by the

two FOCs (87) and (88), which at the symmetric equilibrium can be written as follows

q� + (p� � c(Bx�))v� = 0

�c0(Bx�)�q� � 1 +  = 0.

Next we derive the strategic e¤ect,  � (n� 1)(@�i=@pj)(@p�j=@xi).

Strategic e¤ect. The expression for @�i=@pj , which is strictly positive for � < 1, is given by

(91). The expression for @p�j=@xi is computed in (82): @p
�
j=@xi = � (c0(Bx)=
) (�')

�
~�(�)� �

�
.

By inserting equilibrium values into the de�nition of 
, given in equation (83), we get


 =
f(n� 1) [(1 + �)n+ �] + 1g (��SA=n)4� (n� 1)S2A4(1� �)2

n4 [(n� 1)(1� �) + �n]�2�4 > 0.

The term ' is de�ned in (85). By replacing @pipi�i, given by (102), �p given by (101), and

@Di(p
�)=@pi and @Dk(p�)=@pi provided in Table B3, into ' we obtain

' = �
A4
�
��SA
n

�4�
(n� 1)(1� �) [n(1 + �) + �]S2

n4�4�2
< 0. (107)

To obtain ~�(�) we �rst have to calculate @pipj�i, which using equation (92) and Tables B3 and

B4 can be shown to be

@pipj�i =
�(1� �)S

[(n� 1)(1� �) + n�]�p2n2 .

As a result we have that

@Di(p
�)

@pi
@pipj�i � �

@Dj(p
�)

@pi
@pipi�i = �

A4
�
��SA
n

�4�
(1� �)S2

n4�4�2
, (108)

which is strictly negative for � < 1. By inserting (107) and (108) into (84), and simplifying, we

get

~�(�) = � 1

(n� 1) [(1 + �)n+ �] < 0.

Consequently, the strategic e¤ect is:

 = � q
�

v�
(n� 1)(1� �)�@Di(p

�)

@pj

�
�c

0(Bx�)



(�')(~�(�)� �)

�
.

Let

!(�) =

@Di(p
�)

@pj
(n� 1)(1� �)�'

v�

> 0,
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then the strategic e¤ect is shown to be negative:

 = �c0(Bx�)q�!(�)
�
~�(�)� �

�
< 0.
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