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In Appendix A we provide some technical details and proofs of results in the paper in Section

we develop the Bertrand model with product differentiation.

A.1, and analysis and results for the three model specifications in Section A.2. In Appendix B



A Proofs and the three model specifications

A.1 General model: proofs
A.1.1 Overlapping ownership and A

Common ownership Consider an industry with n firms and I > n investors; we let ¢ and
Jj index (respectively) investors and firms. The share of firm j owned by investor 7 is v;;, and
the parameter (;; captures the extent of i’s control over firm j. The total (portfolio) profit of
investor 4 is ' = > i VikT, where 7, are the profits of portfolio firm k. The manager of firm j
takes into account shareholders’ incentives (through the control weights (;;) and maximizes a

weighted average of the shareholders’ portfolio profits:
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It is immediate dividing by Zle (;;vij that the objective of the manager can be rewritten as

. Soi1 Civin
¢; =mj + Z)\jkﬂk, where \j;, = 3173
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The parameter ;i is the relative weight that the manager of firm j places on the profit of
firm £ in relation to the own profit (of firm j) and reflects the control of firm j by investors
with financial interests in firms j and k. For the manager of firm j to put weight on the interest
of investor ¢ we need CijUz‘k > 0: investor ¢ has to have a stake in firm &k (v;; > 0) and some
control over firm j (¢;; > 0). The weight \jj is larger the more firm j is controlled (high (;;)
by investors with high stakes in firm & (high v;;) and the less concentrated the ownership and
control of firm j (low denominator 37_, (;jvij). The numerator S (;jvik is a measure of
the ownership concentration and control of firm k. As the ratio A; increases, the influence of
the common owners of firm &k over the manager of firm j increases.

We next discuss the cases of silent financial interests and proportional control. In both cases
we assume that each firm has a reference shareholder and each investor acquires a share « of the
firms which are not under his control. The reference shareholder keeps an interest 1 — (I — 1)«
in his firm and we assume that ol < 1 so that 1 — (I — 1)a > a.

Silent Financial Interest (SFI). In this case, each owner (i.e., the majority or dominant
shareholder) ¢ retains full control of the acquiring firm and is entitled to a share « of the acquired
firms’ profits—but exerts no influence over the latter’s decisions. Then A = a/[1 — (I — 1)a]

is just the ratio of the share on an acquired firm k (v;;, = o in k, numerator of Aj;) over



the share in the own firm j (¢;;vi; = 1 — (I — 1)a, denominator of Aji,).! The result is that
Aji is increasing in the number of investors I since when I increases investor 7 has less of a
financial interest in his own firm (and when « increases then on a double account \jj increases).
The driving force is that Aj;; increases as the size of the interest of undiversified shareholders
diminishes. The upper bound of common-ownership is « = 1/I, in which case ASFT — 1,

Proportional Control (PC). Under proportional control, the firm’s manager accounts for
shareholders’ own-firm interests in other firms in proportion to their respective stakes (;; = vi;.
In this case we have that X\, = <ZZ-I:1 vijvik) / <ZZ-[:1 Vij 2) , where the denominator is the

)\PC

HHI on ownership shares of firm j and under symmetry equals

{21 - (I - Dala+ (I —2)a®} /{1 — (I = D)a]* + (I — 1)a?} 2

As with SFI, here A'“ = 1 when a = 1/I. For a < 1/I, then AFC is increasing in both I and o
The effects are more complex with proportional control but the relative weight of the profit of k
over j ends up being monotone in the number of investors I and «. Both the numerator and
denominator of \'C decrease with I but the denominator decreases more indicating that the
ownership concentration of the firm’s manager decreases by more than the one of other firms
when [ increases, inducing the manager to put a lower weight on the profits of other firms. The
driving force again is the decline in the interest of the undiversified stake of reference investors

1— (I —1)a as I or « increase.

Cross-ownership We assume here that each of the n firms may acquire their rivals’ stock
in the form of investments with no control rights. The profit of firm j is given by ¢; =
T+ Zk# ok ¢y, Where oy, is the firm j’s ownership stake in firm k. One can derive the profit
for each firm by denoting ¢ = (¢4, ..., )" and w = (71, ..., 7,)’, and solving the matrix equation:
¢ = w+ A, where A is the n x n matrix with the ownership stakes with 0’s in the diagonal and
ajy, off-diagonal. Thus, ¢ = @7, where © = (I— A)~! is the inverse of the Leontief matrix; its
coefficients 0, represent the effective or imputed stake in firm £’s profits received by a "real"
equity holder with a 1% direct stake in firm j. We examine the symmetric case: o, = ag; = «

for all j # k, and aj; = 0 for all j. The formula for the coefficients of matrix © when stakes are

'Tf i owns and controls j, then (i) Ci; =1land () =0for k #j;vi5 =1~ (I — 1)a and vy, = a for k # 7,
and the manager of firm j maximizes ), vixms.

*Suppose that each investor acquires a share o of those other firms. To compute \j; for a given k # j, note
that if 4 is the majority shareholder of j then (;; = 1 — (I —1)a and vy, = o if i’ is the majority shareholder of k,
then (;; = o and i’ receives an own-firm profit share of vy, = 1 — (I — 1)a. Finally, there are I — 2 investors
who are minority shareholders of j and k; for these investors, the product of their profit shares (and control) is
equal to o2. This explains the numerator of Aji. The denominator follows similarly and we obtain the expression
for APC.



symmetric is, for « < 1/(n —1), 0;; = [ 1=(n=2)a

W and ij = m for all] and all

j # k.> Hence, the profit of firm j with symmetric stakes is given by

. 1—(n—2)a - 0% -
T TV A e e e P

Maximizing the above expression is equivalent to maximizing 7; +A ), 25 Th> where A = A0 =

a/[1—(n—2)a].

Comparative statics. The results for A/

and A9 follow by inspection. Regarding the

case of proportional control, we have that

NC a? [o?1? — 4al + 3] oA 2(1 —al)

Ol (0212 — 2T — 20 +2a+ 1) da  (a2I? — o2l — 2al + 20+ 1)%

Therefore, IN'C /0T > 0 iff ppe(a) = o (a1 —4al +3) > 0 for any I > 2 and o < 1/I.
Solving for pp () = 0, the quadratic (a?I? —4al +3) gives the solutions a = 1/I and o = 3/1.
For a € (0,1/1), (a®I? — 4al + 3) > 0 and o? > 0 and, thus, pp(a) > 0.

By differentiating with respect to a, we obtain plpr = 4a (a2I2 —3al + 3/2) > 0 for a €
(0,1/I). Therefore, ppe > 0 for o € (0,1/1) since pp(0) = 0.

Clearly, AP /oo > 0 for a < 1/1.

Ranking. Let us compare A*¥1 and A\PC; after simplifying we obtain

\SFI _ \PC _ a(l — o)
—l—a(I-D]1+I(I-1)a?-2(I-1)a]

For oo < 1/1I, we have 551 < \PC iff  pep(a) =1+ I(I —1)a® — 2(I — 1)a > 0. Note that
psp(0) =1 > 0, furthermore pgp(o) = 2I(I —1)a—2(1 —1) = 2(I — 1)(Jao — 1) < 0. Since
pp(a) = 2(I-1)I > 0, the global minimum is located at « = 1/1, at which pgp(1/I) =1/ > 0.
Thus, pgp(a) > 0 and as a result AT < \PC.

Finally, forn =1

2
\SFI _ \CO _ o

1+ -2 -1+ -Da]’

thus A5F1 — X9C > 0 for o < 1/1, hence \F'C > NFT > \CO,



Table 4: Summary of Basic Expressions at the Symmetric Equilibrium of the Simultaneous
Game

Second-Order Conditions

O = (@6,/000)] .o = J(@)(2+5A/n) <0
Onniy = (06,02 .. = —~("(Br")Aq" +T"(a%)) <0
(Onae®) Doio6) — O = (@)@ + A6 /m)[(Ba™) (@ /m)A + T"(a)] - ¢ (Ba*)? > 0

Cross-Derivatives

Ogiq; 0i = (82¢i/6qi8qj)|qw* = Q)L+ AX+6A/n) < (>)0for § > (<) — (1+ A\)n/A

Oy 6 = (0°0;/02i0;) . o = —¢"(Bx*)Bg {1+ A[L+ (n — 2)8]} < 0 for S” >0
Onq b = (0°0;/02:04:)] . .. = —¢'(Bz*) >0

Ongi9i = (8°6;/0004i)] o o = F/(Q")(n—1)g" <O

One; 9; = (32@/3/\3%”{1*71* =  —B(n—1)¢(Bz*)g* >0 for 8 >0

Regularity Conditions

Ay = 044:9; + Oug;0:(n —1) = f(Q)[n+ A0 +1)] <0
A, = azlmqbi + 8111j¢i(7l - 1) = 7(611(31*)37‘1* + F//(:E*)) <0

A= AgAy = [Opiqb; + B (1 = 1) Opyq: 03] [Oiqs s + A (1 — 1) BOiqi ;] = DgAz — (O ¢1)2 7B >0

with B=148(n—1),A=1+An—-1),7=1+An—-1)Band A=1+ A(n—1)3%
Remark: Ay <0< A > —(A +n), whereas 9y,4,¢; < 0 < 6A > —2n, thus Ay < 0 implies that 9y,q,¢; <0,
and to have A, < 0 we need that ¢” > 0 or IV > 0, and therefore 9;,,,¢; < 0.

The signs of the expressions follow under our assumptions.

A.1.2 Simultaneous model

Second order and regularity conditions. To start with, note that
AQ*, z") = — [c”(Bx*)BT(Q*/n) + F”(x*)] [f’(Q*)(A(l +9) + n)] — (c'(Bx*))zTB > 0. (20)

In particular, the above condition can be rewritten as [A(1 4 6) +n] H(8) — 7B > 0. Second
order conditions are: (i) 0y,q,¢; < 0, since 9y,q,0; = 2f'(Q) + A(Q/n) f"(Q) = f(Q)(2+ Ad/n),
we have Og,q,¢; < 0 if 6 > —2n/A, which is implied by assumption A, < 0; (ii) Opz;0; < 0,
which is trivially satisfied by Assumptions A.2 and A.3; and (iii) dy,q, ¢; (Oz,2;0i) — (Dgsesd:)* > 0,

which is equivalent to

d(Bx*)? + £(Q")(2 + Ad/n) [d’(m*)(@* A+ T (@) <o, (21)

3See Vives (1999, pp. 145-147) for a solution of a formally identical problem. Gilo et al. (2006, Lemma 1,
p-85) also show that 6;; > 1 for all j, and 0 < 0, < 6;; for all j and all j # k.



where A = 1+ A(n — 1)8%. Noting that 9y,q,¢; = f'(Q*)(1 + ) + f(Q*)Ag* = f(Q*) (1 + A +
dA/n), we have that

Aq = aqz“]i¢i + 8Qiqj'¢i(n - 1) = fI(Q*) [n + A(5 + 1)] < 07

which is satisfied if § > —(n + A)/A. Similarly, noting that 8,,,,¢; = —c"(Bz*)A\g* — I (z*)
and Opz;¢; = —"(Bx*)Bq* {1 + A [1 + (n — 2)A]}, it is straightforward to show that

Ay = Opiw;®; + Oy 0i(n — 1) = — [¢"(Bx*) Brq" + T (2*)] <0,

which is satisfied by Assumptions A.2 and A.3.

Proof of Lemma 1. Using equation (6) and Table 4 we obtain

Oz _ I (Ba")f'(Q")(n —1)q"
ox A

{BIA(L+0)+n]—71}.

Since A > 0,

gn{%A} — sign {B[A(1+06)+n] 1)

T

— sign {B - A(1—|—5)—|—n} = sign {,6’ - P'(C)%} )

where P'(c¢) = n/[A(1+0)+n]. Note that A(14+J)+n > 0since A, < 0. Finally, by substituting
sign{BA(1+9)+n]—7}=sign{f(1+n+0A)—1} 1

Proof of Corollary 1. From Lemma 1 we have that if § < —(1+n)/A,so 14+n+JA <0,
then dx* /0N < 0, which, using equation (7), in turn implies that dg*/OA < 0: for all S only
Ry exists. If 6 > —(n + 1)/A, then in addition to Ry, region Ry exists only if 6 > —n/A also
holds. The reason is that when 1+ n + A > 0, then, from Lemma 1, dz*/0\ > 0 requires
that 8 > 1/(1 +n + 0A). However, 1/(1 +n+ JA) < 1 only if 6 > —n/A, in which case there
exists some region of feasible spillover values for which dz*/9X > 0. Note that for a given n,
the condition § > —n/A is stricter than the condition 6 > —(n + 1)/A. Thus, for § < —n/A

only Ry exists, and since —n/A increases with A, the result holds for any A if § < —n.H
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Fig. 5. Existence of regions Ry and Ry with second-order, stability and strategic comple-
ments/substitutes output competition conditions.

Proof of Lemma 2. If we totally differentiate the first order conditions (FOCs) and solve
for 0g¢* /0N, we obtain

((;q; = (= D(@"/n) 1KQ*/H) B (Bz*)? {B + B({:,((BQ;’B)Q [¢"(Bz*)(Q* /n) Bt + I (z*)] } .
Lot H = B (Drg1/Oxs) (D /Orgidy) = — (/@) (Ba)) ["(Ba*)(@" /) Br + T"(2°)],
evaluated at the equilibrium (Q*,z*). From the requirement that ¢’ > 0 or I > 0 we obtain
that limg_,o H/B = co. H is continuous in /3 as long as Q* (), 2* (/) are since all the functions
involved in the definition of H are continuous and ¢ < 0. We have that Q* (3),2* (3) are in
fact differentiable given our assumptions (see the proof of Proposition 3). The above expression

can be rewritten as

o (n—1)(Q*/n) /) 1 . H
= A P (¢ (Bz*))? (B - 6) , (22)

thus sign{0¢*/O\} =sign{fB — H} A

Proof of Corollary 2. Under A.4 and Lemma 2, d¢* /OX > 0 (so Ry exists) if 8 > /. We
now show that the condition n > H (1) guarantees that ' < 1. First, note that limg_,o H/8 = oo
(when ¢” > 0or T > 0), while B =1at 8 = 0. Since H(8)/ is downward sloping, by continuity
there exists only one value for (= ') at which H(3) = SB. If the condition H(S) < 8B holds
at 0 = 1 (which is equivalent to the condition n > H(1)), then necessarily H/ intersects B at
some f3 less than 1, thus 5/ < 1.1



Proof of Proposition 2. Profit per firm as a function of A at equilibrium is given by

T (A) = (f(Q) — e(Bz™)) ¢" — I'(a7).
By differentiating 7* with respect to A, we obtain

w0 = @ m AL gt — (B BIE g + (1@") ~ e(Ba)) S 1(a) O

Using that in equilibrium f(Q*) — ¢(Bz*) = —f(Q*)A¢* and I"(z*) = —/(Bx*)q*r,

rewrite the above expression as

oq* ox*
= J(@)n— NGy + (B~ B o
/ * a * / * a *

— -0V (1@ - s 5.

_/ *
o LGy

we can

In Ryp, we have that dz* /90X > 0 and d¢*/OX < 0. Hence from the above expression it is clear

that 7*(\) > 0. Note also that when 8 = 0, the equilibrium is in Ry, and therefore 7*(\) > 0

since 9g*/OX < 0. To determine sign{z*(\)} in Ry and Ry for 8 > 0, we replace d¢* /O and

Ox* /OX with the expressions derived in the proofs of Lemmata 1, 2:

) = - 00- g (1@ P arps (5 - 1)

A 5
¢80 "L (@B (BN + 0) 40l = )

_ L H0)

—ﬁw{ﬁ[A(l—i—&H—n] +75 B},

where ¥, = (n — 1)(1 — X\)g* [(n — 1)q¢*/A] ¢ (Bx*)?B(— f'(Q*)) is positive. Therefore,
sign {7*(\)} = sign {(n+ 1+0MN)5 -1+ Héﬁ) - B} ,

so it follows that 7#*(\) > 0 if

I1—-(n+1460)B< Héﬁ) — B, or equivalently
2(1—-6) —dAB < Héﬁ)

(23)

(24)

(25)

From Table 4 and using that in equilibrium 7¢* = —I"(z*)/¢/(Bx*), the regularity condition



can be written as

_ (C”(Bm*)B;(/g;E) . F//(ﬁ)) m [A(1+0)+n]—7B>0.

Noting that

i) - Q) (-8

- d(Bxz*)2 o ¢ (Bz*) BF/(J:*) + F//(x*)> )

we can rewrite the regularity condition in terms of H as follows: [A(1+ §) +n] H(8) — 7B > 0,

with A(1+6) +n > 0 since A, < 0. Thus, if the equilibrium is regular:

H(B) - B
B [A(L+0) +n]B

Then, we only have to show that:

§(8) =B > h(B) = [2(1 — B) — A6B][A(L + ) +n]B

holds. Note that g(0) =1, ¢'(8) > 0, §"(8) > 0 for 8 > 0 and §”(0) = 0. On the other hand,

h(0) =0 and
B (B) = 2[A(1468) +n][1 — (2+ Ad)A].

Furthermore, it can be shown that solving the equation g(5) = iz(ﬁ) for 3 yields the following

two roots:
1 1

b= rns1 ™M= i T

Consider Ry. If the smallest (positive) root in this region is larger or equal to the spillover
threshold 3 that determines Ry (i.e. for 8 < f3, % < 0 for all \), then §(8) > h(B) in Ry, and
consequently, 7*(A\) > 0. First, note that when Ad +n +1 > 0, 3; = 8. We distinguish the

following cases:

e If Ad+n+1>0, then: if A(0+1)+1 >0, (for A < 1) B3 > B; = B > 0, while
if AO+1)+1<0, 8 = >0> By, soin any case ; = (3 is the smallest positive
root in the region and, thus, g(8) > iL(,B) for g € (0,5;). Also, in any case for 8 = [,
dx*/OX = 0 and so sign{7*(\)} = sign{f’(Q*)0q*/O\}, which is positive in Rj since in
this region: dq* /0 < 0.

e If A6 +n+41 <0, then 0> 8; > B, (for A < 1) and A”(B) > 0, so §(8) > h(B) for all 3.

Now consider Ryyp, which may exist only if § > —n/A, in which case 3; > 0. Furthermore,

B > B;. We show that for any 8 > £, §(8) > h(8). We distinguish the following cases:



o If § > —2/A, then By > 8, > 0 (for A < 1) and h”(8) < 0. Hence, §(3) > h(B) for 5 > f,.
Thus, it suffices to show that 5’ > 5. Note that if 7/(\) > 0 for 3 = ', then necessarily
B’ > By since ' > 3; and 7' (A\) < 0 for B € (81, 8). Since condition (24) holds at 8 = 3
H(B)/B —[1+ 8 (n—-1)] =0>1—(n+1+0dA)B3, we have 5 > f3,.

o If —(A+1)/A<—-n/A<d<—-2/Aor —n/A < —(A+1)/A <§ < —2/A, then By > 3; >0
(for A < 1) and 2”(B) > 0, so we can conclude that 3’ > 5.

o If —n/X <8 < —(A+1)/A < —2/A, then 3; > 0, 85 < 0 and A”(B) > 0, so §(B) > h(B)
only for 3 < ;. Also, for ' < 1, condition (24) holds, so §(3) > h(B) for 3 > . But

then it should be 8’ < 3, a contradiction, so in this case Ry;; does not exist.H

Proof of Proposition 3. By totally differentiating the two FOCs with respect to 5, we

obtain
oq* 1
55 = &106:0) (0ri0:0) B = (93,00) Ad) (26)
oz* 1
55 = A 10500 (008 T~ (D5, 60) Ao 27)

Since Oy;q;¢; > 0 and Ogg,; > 0, A > 0, A, < 0 and A, < 0, the sign of the impact of 5 on

output and R&D in equilibrium depends on the sign of dg,,¢;. It can be shown that

082, 0; = —c’(B:U*)m_Bl)q*T <>\7_B — X(Bm*)) (28)

and the result follows.l

Proof of Proposition 4. To prove Proposition 4 a few preliminary lemmata (assuming

A.1-A.4) are useful.

LEMMA 5 Suppose that § > —2, then for given A, W/(A) > 0 iff B > B (\) where § is the

unique positive solution to the equation

HB) g (= AY/ATI(L 4+ 50)5— 1] (29)

B

Proof. We first derive the condition that determines 3. By inserting d¢* /OX and Ox* /0N

10



(given in proofs of Lemmata 1 and 2) into (9) we obtain:

W) = —Af’(Q*)MC/(Bﬁ)zﬁ (B _ H(ﬁ)) o

A B
(1= W8 - 0B DT Q) (Ba) (B +) +n] - 7} Q"

— 9, <A<B_Héﬁ)> +(1—)\)(n—1){6[A(1—|—5)—|—n]—T}),

where 9, = [(n — 1)¢*/Ald' (Bz*)?(—f(Q*))BQ* is positive. Note that (1 —\)(n—1) =n — A,
thus for g > 0, W/(\) > 0 iff

H(ﬁ)_B<n—A

3 A

[(1+n+6A)8—1]. (30)

Note that limg_,g H/3 = oo and (by Assumption A.4) the left-hand side of (30) is decreasing
in 8. The right-hand side of (30) is increasing in 8 (since 1 + n 4+ JA > 0 holds when Ry and
Ryyp exist) and finite at § = 0. Thus, there exists a unique positive threshold /B that solves the
equation (29), and for any 5 > 3 condition (30) holds, that is, W/(\) > 0.1

LEMMA 6 We have that B()\) < B'(N) for all \, which implies that B = B(O) < B(0). Fur-
thermore, < 1 if
n+(n—-1)(+n)—H(1)>0. (31)

Proof. We first show that 8'(A) > B(A) for any X, and as a result 5'(0) > B = 5(0).
Suppose that for given A, B > /', then from Lemma 2 we have that for 8 € (&, B) it holds that
0q*/OA > 0. Thus, from equation (7) it also holds that dx*/OA > 0, which given equation (9)
implies that W’ (A) > 0. However, we have that W’(\) < 0 for § < B, a contradiction. Suppose
now that B = /3, then we can pick 3 such that 3 = B = /', and since H — BB]B:B/ =0, from
equation (29) we have that 8 = 8/ = 1/(1 +n + 6A), which implies that 8z* /OX = 0 (see proof
of Lemma 1), and from equation (7) this in turn implies that d¢*/O\ < 0. However, at 3 = /3,
BB — H =0, so 0q*/OX = 0, a contradiction.

The proof of Lemma 5 shows that W/(\) > 0 for some \ if 5 > g (M), where f is the unique
positive solution to the equation (29). Furthermore, 3 < 1 if condition (30) evaluated at 3 = 1
holds. Therefore, by evaluating (30) at A =0 and 8 = 1 we obtain that condition (31) ensures
that 8 < 1.1

We turn now to prove successively each of the statements of Proposition 4. Let 6 > —2:
i) \jg = A\&g = 0 if 3 < B. First, we show that there does not exist 3 < 3 such that

W'(X) > 0 for some positive A. This follows trivially from the assumption that W(\) is single

11



peaked: since for any 8 < 3, W’(0) < 0, we have that W'()\) < 0 for all positive ), otherwise
there would exist another stationary point that is a (local) minimum, a contradiction. In
addition, if 5 < B, then A2g = 0: from Lemma 6 we know that §'()\) > 3 = 3(0) for all \. For
B < B we have then that C'S’(\) < 0 for all A, thus A\2g = 0.

i) Mg > Agg = 0if 8 € (B, B’ (0)) Since f = B(O), the result that A\§g > 0 for 8 > f3 follows
immediately from Lemma 5 because then W’(0) > 0. In addition, 8 < £/(0) yields \&g =
when H is weakly increasing in A, '(\) also is, and consequently if 8 < 3'(0), then 8 < 3'(\)
for all A, i.e., d¢*/OX < 0 for all A\, thus Agg = 0.

iii) We first show that A3g > 0 and A\&g > 0 if 8 > 3’ (0). From Lemma 6 it follows that
B> '(0) > B, which yields A3g > 0. If 3 > 3'(0), Lemma 2 implies that dg*/O\ > 0 at A = 0,
which implies that C'S’(0) > 0, and therefore Agg > 0.

Next we show that \g > A\&g when H is weakly increasing in A. Note that B > H/f at
A = 0. Since H is weakly increasing in A, for a given 3, we may face the following three cases:
1) for all \, B > H/f; 2) there exists an interval (which could be a singleton) L C (0,1] at
which H/8 = B but H/ < B for A < 1; 3) there exists an interval of values of A, L C (0, 1] at
which H/S = B but H/B > B for some A < 1. In all three cases A7 > Adg:

Case 1: Here, 0¢*/OX > 0 and, by (7), 0z* /90X > 0 for all A, which from equation (9) yields
W'(X) > 0 for all \; thus \pg = A\gg = 1.

Cases 2 and 3: In these two cases, in the region of values for A where H/3 = B we have
Ag*/ON =0 (CS'(N\) = 0), while 9z*/O\ > 0, consequently W'(\) > 0. It follows that in Case
2, Mtg = 1, while any A\ € L is optimal in terms of CS since dg*/OX > 0 for any A < min L, thus
Mg > Aég; in Case 3, any A € L is optimal in terms of CS since d¢*/OA < 0 for A > max L;
Mg > max L since W’(X) > 0 for lower values of \; as a result A5g > Ag.

The particular case where 3 = 3'(0) can be dealt with similarly to obtain that A\jg > Aag >

Finally, we show that A\ g and Agg are strictly increasing in 8 when \jq and Agg are in

(0,1). We have that

W = B2 @) 50 (3, 5)

where p (A, ) =A(B—-H/B)+ (n—A) (B(1 +n+ 6A) —1). Consider the FOC of the welfare
maximizing problem, W’(\) = 0 if and only if ¢ (\,8) = 0. Given single-peakedness of W,

sign{d\pg/dp} = sign{d¢ (A\g, B) /0B}. We have that

gg_ {A;A —Hg8)>—|—(n—A)(1—|—n—|—5A) >0
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since H(B)/p is downward sloping, n — A > 0, and interior optimal lambdas require that Ry
exists, i.e., 6 > —n /A, which in turn implies that 1 +n+0A > 0. Similarly, we can show, using

the fact that H((5)/f is decreasing in 3, the result for Aag € (0,1).1

Proof of Proposition 5. If 6 > —(1+mn)/n, then 1 +n+JA > 0 for all A\. From Lemma 1
we know that when 8 < 1/(14+n+dA): 0x*/OX < 0. From Lemma 5 we have that W’(X\) > 0 if
B> 8 (\) where §8 is given in Lemma 5. Necessarily, 3 > 1/(1+ n+ 6A), otherwise for any 8 €
[B, 1/(1+n+0A)|, we have that dz* /90X < 0, which from equation (7) implies that dg* /O\ < 0,
which using equation (9) yields W/(\) < 0, a contradiction. Since B(A\) > 1/(1 4+ n + 6A) for
any A, then B(O) =8> B, and given Lemma 6, 3 < B < B'(0) is established. Next we prove
each of the statements. (i) When § > —(1 4 n)/n not only Ry but also Ry may exist for n > 2
since 6 > —2. If —(1+n)/n < § <0, then inf{1/(1+n+Ad): X€[0,1]} =1/(1+n+46) >0,
whereas if 6 > 0, inf{1/(1+n+Ad) : A € [0,1]} = 1/[1+n(1+0)] > 0. In both cases, if
p < B, it follows from Proposition 1 that only R can exist. (ii) Lemma 5 ensures that if 3 >
B = B(0), then W’'(0) > 0, thus A}g > 0; (iii) From Lemma 2 we have that if 3 > £'(0), then
9q* /ON|,_o > 0, which implies that C'S’(0) > 0: Agg > 0.0

A.1.3 Two-stage model

Threshold S(\). Let z; be the action of firm i (¢; in Cournot) and let z* be the n-vector of

second stage equilibrium actions, then the FOC in the second stage is

0

afzzfﬁi(-) =0, (32)
whereas in the first stage is
87532-@(2 (x),%,A) + ; Bizjd)i(z (%), %, A)BTciZj (x) =0, (33)

where x is the n-vector of investment levels. The equilibrium in the two-stage model is thus
characterized by the system of equations (32) and (33).

To obtain 3()\), we first need to obtain the expressions for 8z} (x)/dz; and 075 (x)/0zi: we
differentiate the FOC (32) with respect to z; and xp, (h # i), and evaluate both derivatives in

the symmetric equilibrium, then

01 10) 27 (%) (1= )0y 64(%) 25 () + O 64() = 0 (39)

Z .
ox; " T
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and

0
al’i

0 *(X) + axhziﬁbi(x) =0.

0riey $i(X) 521 (%) + [0212.6,(x) + (0 = 2021z, 61(0)] 52

Solving (34) and (35) for 9z (x)/0z; and 0z7(x)/0z; and rearranging terms, we obtain:

0 1
0z, z(x) = Q [(_8wzzz¢l) (8Zi2i¢i - 621'33‘ ¢z) +(n—1) azizj b (axhz¢¢i - 6:1:121@)]

and

0 1
*(X) = 6 (axizi¢iaziZj ¢z - awhzngzazlzlqbz) 5

Z'
6301' J

where

Q = (azlzngz - aziZj d)l) [8zlzl¢z + (TL - 1) azizj' ¢z] .
Consider Cournot competition, z; = ¢;. Then, we can rewrite (36) as follows:

d —(B .
axﬁﬁ(X)=:(:éx)@n%¢i<ﬁ(k)—-ﬁ),

where

Q = fHA-N{f@)n+A0+1)}
= f(Q)*(1—N)[n+ A6+ 1)

Since Oy,q,0; = f'(Q*)(2 + dA/n), we have that

0 d(Bx NN /-
a0 = g AT (2t ) (B0 -)
d(Bx) n+ oA -
= _nf’(Q*j)B(l—)\) {niAj(LcH—l)] (B -5).

where
By = Oqiq; @i _ n(1+A) +Ad
Dgiqi D 2n + Ao

with 0 < B()\) <1 and 3(1) = 1. Finally, note that

09,
8q]'

= Af(Q")g" (1= N),

14
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thus for A < 1

8(]]' 61’1 qj

Lk d(Bx) 2n + oA .
AFQ (- Nt |2 (B - )

= Bt [%] (B -5).

When A = 1 there is no strategic effect since firms are colluding. In this case maximum joint
profits are achieved. However, when § < 1 the strategic effect does not vanish when A — 1.
This is so since 0¢;/dq; — 0 and 8q;-‘/8a:i — —00, © # j, at the same rate when A — 1 and
the product of both derivatives is positive in the limit. Suppose that z; = x;, then as A — 1
it is not efficient to have firm j produce when < 1 if z; increases since then ¢; < ¢;. (Note
that cost is linear in output.) When S = 1 the strategic effect does vanish in the limit A — 1
since then 3 (A) — 1. Indeed, when 3 = 1, if z; increases we have that ¢; = ¢; and both firms
are equally efficient. The consequence is that when § < 1 and A — 1 there is a discontinuity in
total profits at our symmetric equilibrium, not attaining the cartel profits achieved when A = 1.

Proof of Lemma 3. We have that

= v n(l+ )+ Ao
BN = 2n+ A6

By differentiating B with respect to n we obtain:

B sa-n7
on — (2n+6A)%

Thus, for A < 1 and convex demand (§ < 0), 3/dn > 0; if demand is concave (§ > 0),

op /On < 0. Let us now differentiate 3 with respect to A:

B n2(5+2)

ON  (2n+6M)
then, d3/0X > 0 if § > —2. Finally, we differentiate 3 with respect to d:

9B An(1-))
90 (2n+ M)

Thus, 83/86 > 0if A < 1.1

Proof of Lemma 4. Using (12), by totally differentiating the system formed by (10; 11)
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in a symmetric equilibrium, and solving for d¢*/0A and 0z*/O\, we obtain

oq* 1

o = 5 {0001+ (0= 105] (Bria ) B = 030,64 [ + v, (n — D]} (39)
ox* 1
R G e O A R R CR VOV 3 (40)

where ¢, = 0¢/0z with z = ¢, z, A, and

A(Q*>$*) = Aq [Aiﬂ + wz(n - 1)] - 8351'Qi¢i [aiciqz'(biT + wq(n - 1)} Bv

which is assumed to be strictly positive.* By rewriting equation (40) as follows

%’f =9f(Q*) (Bz*) {(B+ s'(N) [A1+6) +n] — [t + (n —1)s(N)]}, (41)

where ¥ = (n — 1)(Q*/n)/A and s(\) = w(\)(B(\) — B), we get that sign {dz*/ON\} is given
by (15). Let us now turn to the impact of A on output in equilibrium. Equation (39) can be

rewritten as follows

90— 9 (5 + 5/ () (Ba B+ F/(Q) { (Ba )@ /m)B 7 + (n— DsV)] +1"(a)})

(42)

By inserting the FOC (11) evaluated in the symmetric equilibrium into the above expression,
after some manipulations we get that sign {0¢*/0A} is given by (16). Finally, note that the
FOC with respect to output is identical to the one associated to the static case. Therefore, we
obtain again equation (7), which implies that if dz*/0X < 0, then 9¢* /90X < 0. From (15), we
obtain that dx*/0X > 0 if and only if

1— (W WA +wNB N))P() 1+ w(N) (n — 1)B(N)

B> QQS = (14+n+Ad)+ (n—1w(X) — P'(c)"tnw'(N)

LEMMA 7 Under assumptions A.1.-A.4, in the two-stage model, there is a cut-off spillover

value for spillovers (B2S < 1) above which allowing some overlapping ownership is socially

optimal (Npg > 0) if

(14 5(0)n+ (1 —s0)(n—1)((1+s(0)(1+d+n)—[1+ (n—1)s(0)] — H(1) > 0. (43)

4We show in Section A.2.2 that A(Q*,x*) > 0 is also a necessary condition for having a positive output at
equilibrium in AJ.
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Proof. By differentiating W () we have

W) = [£(@") — e(Ba)n 2L — o (Ba) BQ O

ox*
o\’

—nl'(z")

Using the FOCs, f(Q*) — ¢(Bz*) = —f(Q*)Q*A/n and (14) in the above expression, and

simplifying, we obtain:

W) = {-AL@) 55 ~ [0 -8 s - DB G

If we insert (41) and (42) into (44), after some manipulations we get
W) = PuQ (=f(Q) [A(¢(Bz)*(B+5'(\)B (45)
+/(Q) {"(Bz")(Q"/n) B[ + (n— 1)s(A)] + I (z")})
+c(Ba")?[(1 = \)B = s(N)] (n = 1) {(8 + 5'(N) [A(L +0) + n]

[+ =1)sN)]}],
where 9y, = (n — 1)(Q*/n)/A. Then W'(0)|4_, > 0 if and only if

0 < (d(nz"))? ((1 +5'(0)| g_)n + (1= 5(0)[g_y)(n — 1) {(1 +5'(0)| 5 ) (1 + 6 +7n) (46)
~[1+ =1 55| }) + 7@ {¢(ra)Q [t + (0 = 1) s(0)] 5] + T }

From equation (14) we have that in equilibrium and for A =0 and g = 1:

nl(z*) .
¢(na*) 1+ (n = 1) 5(0)] -y

Q*’)\:O,ﬁ’:l =

Substituting Q*[,_g 5, into (46) and using the definitions for x(Bz*) and {(Q*,z*), we obtain

the condition for the two-period model:

0 < (14 50)],_)n+ (1= 5(0)|p_y)(n— 1) {(1 +5/(0)] 5 ) (1 + 8 +n)
—[1+ =1 5Ol ]} - HQ),

where
2n+9d)[(n+9)/(2n+ ) — f]

5(0) = nn+1+9)
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Table 2: Model Specifications

AJ KMZ CE
Demand  f(Q)=a—bQ f(@Q)=a—-0bQ fl@Q)=0Q ¢ 0<e<1
0=0;a,b>0 0=0;a,b>0 d=—(1+4¢);a=0b=—-0<0
c() C—xi— By 4% || C— [(2/7)(xi+52j#wj)}l/2 K@i+ B4 25) "% a6 >0
I'(z) (v/2)z* x x

and

3/(0) o [2n2 +0(2n+1)+ 52] (n—1)8— (52(71 1) - (5(2712 - n(n2 )
. (n+146)n -

Thus, s'(0)|s_; = [1+6 —n(n —2)] /(n + 1+ §)> Note that by setting s = s’ = 0, we obtain

the condition for the simultaneous case, that is, (31).H

A.2 The three model specifications

In this section we characterize each of the model specifications considered in the paper: first in
the simultaneous and then in the two-stage model. First we describe briefly the main assump-
tions of each model specification.

As shown in Amir (2000) the AJ and the KMZ model specifications are not equivalent for
large spillover values (the critical value depends on the innovation function and on the number
of firms). The difference between the two models lies on the innovation function and the
autonomous R&D expenditures. Under the KMZ specification, the effective R€D investment
for each firm is the sum of its own expenditure z; and a fixed fraction () of the sum of the
expenditures of the rest of firms, i.e., X; = x; + 3 Z#i xj. Instead, under the AJ specification,
X is the effective cost reduction for each firm, so ¢(+) is a linear function. Thus, in AJ decision
variables are unit-cost reductions, whereas in KMZ decision variables are the autonomous R&D
expenditures. In particular, in KMZ the unit cost of firm i is ¢ — h(z; + Zj# x;), where for
given z; > 0 (i = 1, ...,n) the effective cost reduction to firm ¢, h(-), is a twice differentiable and
concave function with h(0) =0, k() < ¢, and (9/dz;)h(-) > 0. As in Amir (2000), to allow for
a direct comparison between AJ and KMZ, we consider a particular case of the KMZ model:
h=12/ (@i +B> 4 7)]*/2 with v > 0. The CE model considers constant elasticity demand
and costs with «, k > 0 (see Table 2); « is the unit cost of production (or innovation function)
elasticity with respect to the investment in R&D and there are no spillover effects. Note that

the assumption € < 1 implies that § > —2, and consequently quantities are strategic substitutes.
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Finally, I'(z) is quadratic in AJ but linear in KMZ and CE.

A.2.1 Simultaneous model

We first discuss comparative statics on equilibrium values given in Table A1, and then derive
Table A2, which provides the second-order and regularity conditions for the three model spec-
ifications (we also explore the feasible region for the constant elasticity model in Lemma Al).
Second, we establish Lemma A2, which determines sign{0dq*/0\} and sign{dxz*/0A} for each
model specification. Third, we derive the spillover threshold value 3 and 8'(0) in the examples
(Table A3). After that, we conduct a comparative statics analysis on 3. Finally, we examine
welfare in AJ and KMZ, obtain the optimal degree of overlapping ownership in each case (Table

A4) and state and prove Proposition Al.

Table Al: Equilibrium Values

AJ KMZ CE
* a—¢ a—cC _ 1+« —a(l-—
q Vb(;((_m)_)BT vb(71§+n))_7 a—,lw [J (rar/m) k1 (1 — z—:A/n)]( Ta)/e—a(l—¢)]
* T(a—c 72(a—¢)? — 1/[e—a(l—¢)]
X ’yb(A(-‘rTb)—)BT 23["}/)/1)(/(\—0—”))—7']2 % [U (Ta/n)E K/a 1 (1 - 6A/n)] & €

Table A2: Second-Order Conditions and Regularity Condition

AJ KMZ CE
S.0.C Vb >1/2 b > 7/(2X) n > AE) gpg 0ta) ;((Q’LTAA(Q)
Regularity Condition ~b>7TB/(A+n) || vb>7/(A+n) || e—a(l—¢) >0

with A =1+ A(n —1)52.

Table A3: Spillover Thresholds 3 and /3'(0)

B B'(0)
n (n—2)++/(n—2)2+4by(n +2)(n — 1) -1+ JTT I m=Dl/R0 - 1)

2(n+2)(n—1)
(n—2)+by(n—1)++/(n—2)2+by(n—1)[by(n — 1) + 6n + 4]

etz 20+ 2)(n—1) "
CE is the value above which:
(n—e)af{B+(n-1)[n—¢c)—1]}—ela+1)B>0 e(a+1)/la(n —¢)]

Comparative statics on equilibrium values. In AJ and KMZ the R&D expenditure z*
and output ¢* per firm increase with the size of the market (a) and decrease with the level of

inefficiency of the technology employed, ¢, the slope of inverse demand, b, and the parameter
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~ (which is the parameter of the slope of the R&D costs in AJ). In the CE model z* and ¢*
increase with the size of the market, o. In addition, the costlier the technology employed, &,
the lower is total output, @Q*. However, z* decreases (respectively, increases) with x if demand

is elastic (inelastic). The last two results hold for any value of A and 3.7

Derivation of Table A2. In AJ and KMZ it is immediate that 0440, = —2b < 0.
Furthermore, in AJ: condition 9y,q,¢; (Or,z; ;) — (Ogsz;9;)% > 0, given by (21), can be written as
2by — 1 >0, since ¢’(-) = 0 and I'(x) = 7, 80 Oy,2,0; = —7 and Oy,z,0; = —¢/(-) = 1. In KMZ,

(21) can be written as

1 /2 ! 1 (2 )‘3/2 .
— (2B — o | = ( 2(Ba* 7\ < 0. 47
[72 <7( )) ] [72 S5 0
From FOC (3) we have that in equilibrium
. I (z* 1
¢ = () = . (48)

—d(Bx*)T  (1/y)[(2(Ba*) /] 7

Inserting the above equation into condition (47), after some manipulations, it reduces to 1 —
2byA /T < 0. (Note that if b > 7/2 holds, then the condition 4b > 7/(2)) is satisfied.) In AJ
and from (20), it is immediate that A = yb(A 4+ n) — 7B since ’(-) = 6 = 0, f(Q) = —b and
I(z) = yz. In KMZ we have:

A= - [712 <i3x*> ~3/2 BT(l/v)(2B;*/v>—1/2T] b (A +n)] - ;2 (3333*) "B
- i (im*)_1 [Bb(A tn)— Tﬂ .

Therefore, in KMZ A > 0 if vb > 7/(A + n). Regarding the constant elasticity model we have:

LEMMA A1l (Constant elasticity model) At the equilibrium, for a given n > 2 and A\ > 0,
second order conditions together with the condition of non-negative profits require that

(i) max{eA,A(1 +¢)/2} <n <eA(B+ar)/(ar),

(ii) (1 + a)/a > n(n — A)/ [5\(271 + Aé)], with A =1+ A(n — 1)82.

Furthermore, the equilibrium is reqular if and only if (1 + )/ > 1/e.

Proof. From the FOC (2) we need that

n > e, (49)

’The same result is obtained in Dasgupta and Stiglitz (1980) for A = 8 = 0 and free entry.
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otherwise the system (2; 3) will not have a solution. Since § = —(1+¢), A, < 0 if condition (49)
holds (see Table 4). This condition also guarantees that @* and z* are both positive. Notice
that 0y,q,0; < 0if (f/(Q*)/n)(2n + Ad) < 0, then Jy,q,¢; < 0 if

n>A1+¢)/2. (50)

Since A € [1,n], we have that the latter condition is always satisfied for ¢ < 1. By construction
O,z 6; < 0. Furthermore, second order condition 9y,q¢; (Oz,e;0i) — (Dgie;®;)* > 0, which is

given by (21), reduces to
—%”Q*—(ff“)(zn + A%) [a(a + 1)r(Bz*)~@D(Q* /n)A| + (ar)?(Bz*)~2+) < 0. (51)
From the FOC (2) we have that at the symmetric equilibrium
Q" =lo(n —eh)/(n)]/* (Ba™)/%. (52)
By substituting (52) into (51), after some manipulations, we obtain
(Bz*)~2@+D) g2 {— le/(n — eA)] (2n + A8)(a + 1)A/n + a} <0.

The above condition is satisfied if e(a+ 1)/ > n(n —eA)/[(2n+ Ad)A], which proves statement
(ii) of the Proposition.
From (20) we have that A > 0 if

0 < —ala+1)r(Bz*)" Q" /n)rB |e(1 +¢)oQ*  CrIAQ* — eo@* TV (A + n)]

—(ar)?(Bz*)"2et B, or

0 < Q) _a(a+ 1)k(Bz*)~ 2 (Q*/n)rB| [e(1 4 &)oA — ea(A +n)]
—(ar)}(Bz*)~" ot B,
Substituting (52) into the above expression, we obtain

o(n —el)
nK

A —(e+1)/e
0 < - < q

[U(n -

1/e
:| (BJ?*)a/a

B

—[e(1+)oA —co(A +n)] - (ak)?(Bz*) "2+ rB,
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rearranging terms yields

B
Boy-2asn) [ R ([ KTBY 2 AY — (or? -
0 < (Bz") e p—y ala+1) - (—eon + e°0A) — (ar)*TB| , or equivalently,

0 < (Bz*) 2 ai2rBle(a+1) — o .

Therefore, A > 0 holds if (14 «)/a > 1/¢, or, equivalently, if e — a(1 — ) > 0.

We turn now to deriving the condition under which profits in equilibrium are nonnegative. At
the symmetric equilibrium, each firm’s profit is given by 7(Q* /n, z*) = [f(Q*) — ¢(Bz*)] (Q*/n)—
x*. Then, 7(Q*/n,z*) > 0 if 7 = [f(Q*) — c(Bz*)] Q*/(z*n) > 1. Write

dop =0 (%)E KL <n —neA) )

Then Q* = [n/(akt)] 9cp WT/E—0=E)] 1* — (1/B) 9op /7214 "and condition 7 > 1 can

be expressed as

ORT ORT

[U (L)* Jop—OFae=al=a] _ a/[ea(le)}] 1 g pelali-alg s .

Rearranging terms, and replacing ¥¢ g into the above expression, we get [eA/(n — eA)] [B/(aT)] >

1. It follows that # > 1 if

(EA> (B+ar) > n. (53)

aT

Combining conditions (49), (50) and (53) yields statement (i).H
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Fig. Al. Feasible region for the CE

model with n = 7.

Feasible region for the constant elasticity model with A\ = 0. From Lemma Al
we have that A > 0 if (1 + «)/a > 1/e. When A = 0, the LHS of condition (i) is satisfied
for any n > 2 since € < 1, moreover the RHS of condition (i) can be rewritten as follows
n < pep(Bf) =e(l+a—f)/(a—¢ef). Since pp > 0 (as we are also imposing that A > 0),
condition n < pop(B) will hold for all g if n < e(1 + a)/a. Last, condition (ii) with A = 0
writes as (1 + a)/a > n(n —¢e)/[2n — (1 + ¢)]. Therefore, at A = 0 we only have to consider
the RHS of condition (i) and condition (ii). These two conditions are depicted in Fig. Al for
n = 7; the grey area are combinations («,¢) for which the two conditions are satisfied (these

combinations of parameters also satisfy the two conditions for n < 7).

Determination of sign{dq*/0A} and sign{dz*/0\} in AJ, KMZ and CE. Note that

0q*/OX can be written in the following manner

3;; _ ("—12@*/”) {(¢(B")? BB+ /(@) [¢"(Ba") Q" /m)Br +T"(z")] },  (54)

then after some calculations, it is simple to verify that in the simultaneous model:

LEMMA A2 We have (i) In AJ: Sigﬂ{@q} — sign{B(1+ B(n—1)) — by} and sign{ax } _

oA 0
: g . [Og . . [ Ox" .
sign{fB(n + 1) — 1}; (i) In KMZ: sign ox (= sign{ — vb} and sign (= sign{f(n +

*

1) —1}; (i) In the CE model: sign { %

Y } =sign{f [a(n —eA) = A(n — 1)e(a+ 1) —ec(a+1)}
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*

and sign { Oz

o\ } =sign{f[(n—¢) —A(n—1)(1+¢)] —1}.

Derivation of 3 (Table A3). Note that dz* /O can be written as

Oz _ (n—1)(Q"/n) [ (@) (Bz")

= N BA(L+6) +n) -7 (55)

If we insert equations (54) and (55) into equation (9), after some manipulations we obtain

W) = [(n— 1(Q")/(nA)] (~f(Q)F . where

Fo= AM(d(Ba*)? BB+ f/(Q)" (Bx*)(Q* /n)Br + " (z*)]}
+(d(Bz*)* (1= NB(n— 1) {BIA(L+6) +n] — 7}

By noting that in AJ: f'=—b,0=0,c = -1, " =0 and I = ~, it then follows that

FA = Fli_o=8B—-by+B(n—1)[B1+n) 1]

= (n=1D(n+2)8—(n-2)8-by.

By solving F 47 = 0 for 5 we obtain the expression for BAJ. Notice that BAJ <1lif

(n—2)+(n—22+4by(n+2)(n—1) < 2(n+2)(n—1),

or

(n—22+4by(n+2)(n—1) < 2(n+2)(n—1) — (n —2)]%,

which can be rewritten as 4by(n + 2)(n — 1) < 4n?(n +2)(n — 1). Thus, B < 1if by < n? In
KMZ we have ¢ = ¢ — \/(2/")/)({EZ +B2%5), ['=-b,d=0and I'" =0, then

§ . SWB | Bm-Fw -1
Ny (2B /) 2Bz

_ 1 —bg*BY/? B . .

PR = Fly =

By replacing ¢* and z* into the above expression, after some calculations we get

(@ 4n) -1 g
FEMZ _ A <—bB + 5 {B+(n—-1)[(1+n)— 1]}> :
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It is then immediate that: f¥M% >0 < 5 > BKMZ. Notice that BKMZ < 1if
{(n=224byn—1)byn—1)+26n+2)}* < 2n+2)(n—1) —n+2—by(n — 1),

which can be rewritten as 4n(n + 2)(n — 1)(—n + by) < 0. In the constant elasticity model
f=0Q7 ¢ c=r(z; + 52#1 xj)”* and I'(z) = z, then

FC'E' — F|)\:0 _ (aﬁ)2<Bx*)f2(a+l)BB _ 50(@*)75*104(04 + 1)H(B$*)7(a+2)q*B

+(ak)?(Ba*) "2t B(n — 1) [B(— +n) — 1].
By replacing ¢* and z* into the above expression, we obtain

FOF = o252, 20408B _ co[n/(ar)] 1+ o~ (1Fa)(1+e) (o 4 1)~ (0F2) 041 p  (56)

+a?k227 204 8(n — 1) [B(—e +n) — 1],

where

z = [a (%)E 1 - e/n)} Heraliza) .

By noting that z~(e+t)(+e)=(at2)+(atl) — —etall=¢),~2(1+0) we can re-write equation (56) as

follows
FOE = ;7204902 {aBB + af(n — 1) [B(—e +n) — 1] —e(a+ 1)B/(n —¢)}.
Hence f “F > 0 if and only if

(n—e)af{B+(n—1)[Bn—¢e)—1]}—e(la+1)B > 0.1
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Threshold value B
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Fig. A2a. AJ model. Fig. A2b. KMZ model.
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Figure A3a. CE model. Figure A3b. CE model.

Comparative statics on 8. Fig. A2a (respectively Fig. A2b) shows the value for 5 under
the AJ (KMZ) model specification as a function of the number of firms and for different values
of vb. As the figure makes clear, BAJ and BKMZ decrease with n: when there are more firms in
the market, there is more need for overlapping ownership in order to internalize the additional
externalities. We also have that BAJ and BKMZ decrease with b, although f is lower than 1
for lower values of b in the KMZ model than in the AJ model.

Fig. A3a and Fig. A3b depict BCE as a function of n and for different values for o and

€. A glance at these figures shows that BCE decreases again with n (for given ¢ and «). In
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Table A4: Optimal Degree of Cross-ownership in AJ and KMZ

o0
ATs

; [(n+2)(n=1)B—(n—2)]8—by
Al min {max {0, =D B(B=1)F+7] } , 1}

. [(n+2)(n—1)B—by(n—1)—(n—2)]8—by
KMZ min {max {Ov (n=1){[26+by(n—1)-2]8+bv} } ’ 1}

addition, Fig. A3a tells us that for given n and ¢, BCE decreases with the elasticity of the
innovation function, a, whereas Fig. A3b shows that for given n and «, BCE increases with ¢,
so it decreases with the elasticity of demand. We also have that for the (feasible) combination

of parameters («, €) considered here, BCE > 1 when there are two or three firms in the market.

Optimal degree of overlapping ownership (TS and CS standard)
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& o
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Fig. Ada. CE model. Fig. A4b. CE model.
(a=01,0=k=1,n=28, 5=0.8) (e=08,0=k=1,n=8,3=0.8)

Fig. A4a and A4b show that the greater is the elasticity of demand, ¢~!, or the elasticity
of the innovation function, «, the greater should be the degree of overlapping ownership if the
social planner seeks to maximize total surplus; however, if the objective is to maximize consumer

surplus, then for the same parameter range, A\gg = 0.

Welfare in AJ and KMZ. Here, we show that welfare is a single-peaked function in AJ

and KMZ; we also derive g under these two model specifications (Table A4).
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Case AJ: By inserting equilibrium values into the welfare function we get

s (2A+n)yb -7
[(A+n)yb— Br]*

1
W = §n7(a —0)

If we differentiate W with respect to A we obtain:

dW (n=1)(a—=2)yb{Ab+B2A(B—n)+n—2—f(n+2)(n— 1)]}Q
dA [(A+n) by — Br]? '

Note that solving dW/dX\ = 0 for X yields a unique stationary point, given by AAJ. By taking
the second order derivative with respect to A, evaluating it at A = A4 7, and simplifying, we

obtain
W _ (n—1)%(a—2e)b[2(8—1) B+’ 0
A\ i,y [~ 2)(n— 1284 —6(n — 1) + 21 + 220 — Z3)°

where Z; = [(n? +4n — 1) yb+ 3 (n — 2)] 8, Zo = 2[yb(1 — 2n) + 1] B and Z3 = vb(1 — vbn).
The second order condition requires that vb > 1/2 (see Table A2), then 2(8 — 1)5 + b > 0 for

any (€ [0,1], and as a result: d?W/d\? < 0. Since A4y is the unique stationary point

’,\zﬁ\ Ay
of W, it follows that A AJ is a global maximum. This is the desired \fg.

Case KMZ: By inserting equilibrium values into the welfare function we get

2
W= ln'y(a _ 2 (2A + n)Byb 27' .
2 [(A+n)yb—71]"B

By differentiating W with respect to A we obtain:

aw :7(n—1)(a—6)7b{ABvb—|—B[2)\(B—n)+n—2—ﬁ(n+2)(n—1)]}Q
dX B{(A+n)by — 7] ’

and by solving dW/dA = 0 for A we get a unique stationary point, given by Micaz. The second

order derivative with respect to A evaluated at \ = A KMz yields

d>W vb(n — 1)%(a — ¢ 7 Q
12 = KMZ'\<,
d)‘2 )\:5\[(]\42 B [(A + n)’yb - 7—]3

where Ziuz = — [Bn + (1 — )] n(16)2+ [48(1 — B)n + (1 — B)% — §n%] b+ BB [B(n +2) — 2.
The regulatory condition requires that vb > 7/(A-+n) (see Table A2), thus d?W/d\? | NS rears

0 whenever Zx 7z < 0. Since A KMz is the unique stationary point of W, it follows that A KMZ
is a global maximum whenever Zg sz < 0. This is the desired Ajg. It is straightforward to show

that the regularity condition is stricter than the second order condition under the KMZ model

specification for n > 2 (see Table A2). In addition, the regularity condition becomes stricter

28



as A and n increase. For A = 1, the maximum value of the right-hand side of the regularity
condition is v/n(n—1)/ [4(n — \/n)], which for example equals 0.60 for n = 2 and 0.68 for n = 3.
Numerical simulations show that assuming vb > 0.62 guarantees that Zx sz < 0 holds for any
n; thus, Zxpz < 0 is a mild condition: it is slightly stricter than the regularity condition in

duopoly but softer for oligopoly of three or more firms.H

PROPOSITION A1 A Research Joint Venture with no overlapping ownership (A = 0 and
B = 1) is socially optimal in AJ when vb > n?, in KMZ when vb > n, and in CE (provided
that W () is single peaked) when o > en/[(n — 1)e2 + (=1 4+ n — 2n2)e + n(n? + 1 —n)].

Proof. When W () is single peaked, 3 is the minimum threshold above which allowing
some positive A is welfare enhancing (Proposition 4). Consequently, A}g = 0 for any 5 € [0, 1]
if 3 > 1. From Table A3 we have that B4, > 1 if vb > n? and By > 1 if b > n;
in both cases W()) is single peaked (see above). Also, from Table A3 we obtain (., and
solving Bop = 1 for a, yields the threshold value in terms of n and e Bop > 1 if a >
en/[(n —1)e?2 + (=1 +n — 2n?)e + n(n? + 1 — n)]. Next we show that for A = 0, W’/(3) > 0
under AJ, KMZ and CE model specifications, and therefore it is socially optimal to set 3 =1

in the three cases. We can write

ow aq* / * * % / * oz* *
% = (f(Q")n — nc(Bz™)) ;ﬁ —nc (Bz*)(n — 1)a*q¢" —nc'(Bx™)B (‘3Bq (57)
NG
—nI"( )36
= | SAF@)5 — (L= N = D) (Ba") g — ¢ (Bat)(n — Dat| Q"

In AJ and for A = 0, d¢* /0B > 0 and 0z*/J > 0 (see Table Al), thus from (57) it is clear
that OW/95 > 0. In KMZ and for A = 0, d¢* /93 = 0 and 9z*/95 < 0. Higher R&D spillovers
reduce R&D expenditures but also the unit cost of production of all firms. The latter dominates

the former:
ow 1 mnfa-— ¢)?y(n—1)
B 1= 2[by(n+1)—1)*B2

In CE and for A =0, 9¢*/08 = 0 and 9z*/9F < 0. As in KMZ, welfare is increasing in 3:

> 0.

ow
op

n o (&) 5 (1- £)]=50 (n—1)

=5 >0

A=0

Fig. A5 is a snapshot of the application and depicts optimal lambdas as a function of R&D

spillovers in the first panel; welfare, consumer surplus and profit as a function of A in the second
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panel, price and cost in the third panel, and ¢* and z* in the last panel (for 8 = 0.5 and n = 6).
The figure illustrates that for an intermediate value of 5, consumer surplus decreases with A,
and also does so welfare when A is not too low (second panel), whereas for 3 sufficiently large,

it is optimal in terms of consumer surplus and welfare to have A = 1 (first panel).

Snapshot of the Application
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Fig. A5. AJ model. (a = 700, ¢ = 500, v = 8.5, 8 = 0.5, b = 0.6)
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Optimal degree of overlapping ownership (TS and CS standard)
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04l
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—w ]
Fig. A6a. KMZ model. Fig. A6b. KMZ model.
(vy=3,n=6,b=0.3) (vy=3,8=0.8,b=0.3)

Table A5: Effect of Parameters on A\5g and A\¢g

ATs Cs
AJ KMZ CE | AJ KMZ CE
Number of firms (n) + + + || (+) 0 (+)
Elasticity of demand (b~1,e71) + + + ||+ + ]
Elasticity of innovation function (v, a) + + | )+ [+
Degree of spillover () + + + || () () ]

Key: (4), the parameter enlarges the region where Agg = 1; (+), the effect is positive only if both 8 and n
are sufficiently large (otherwise there is no effect); (4+)*, the effect is positive only if the parameter is sufficiently
large and b is sufficiently small (otherwise there is no effect); [+], the effect is positive when n is sufficiently

large (otherwise there is no effect).

A.2.2 Two-stage model

Next we present equilibrium values of output and R&D together with the expressions for
sign{0q*/O\} and sign{dxz*/O\} for each model specification. After that, we conduct a com-
parative statics analysis on 3, and on Mg and Agg. Finally, we compare the static and the
two-stage model and briefly discuss the comparative statics on the other parameters of the
model.

Equilibrium values and sign {0¢*/0\} and sign {0z*/0\}. We consider each case in

turn.
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Case AJ: FOCs (10; 14) yield

—bA¢* +a—bng" — ¢+ Bx"* =0

[T—I-nﬁA(n—l)(l—F)\—Qﬁ)} g — vz =0.

Solving the system for equilibrium values gives

. Ya—¢

. (n—l)(n%\)(l%-)\—Zﬁ)—i—T (a — @)
q = X and z* =

A

where

A Yo(A +n)? — B(n— 1A+ X —28)+ (n+ A)7]

A+n '

In this case, as in the simultaneous model, H(/3) = by, then using (16) we obtain

sign{%q;} :sign{@,ﬁ—zry) (n+A)+ B [W(n— 1)n—|—A]}

and using (15) we get

sign { 8;; } = sign{fA+n+(n—1)(w(A) = A)]

. [mm Dt A] —1— (n - DB},

where we have used that

SONBO) = 8) +oWF )] (A +m) = 222 0k a,

Case KMZ: The output and R&D values in equilibrium are given by (10; 14):

9 1/2
—bAG* +a—bng* —c+ [( >Bw*} =0
Y

i [(i) Ba:*}_l/2 [T+ (n— 1)n+AA (I+X-— 26)} ¢ —1=0.

Solving the system for equilibrium values gives

* ’Y(a B 6) and ¥ = 1 ((L — 5)219%(MZ’Y
Yb(A+n) —Ixmz

2 Bby(A+n) — Ixmz)?

q

with Ygpz =7+ s(A\)(n—1) = (n— 1)n+¢A (1+X—28) + 7, where s(\) = w(A\)(BA) — 3).
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In this case, as in the simultaneous model, H(5) = byB, then from (16) we have

sign{aaq;} _ sign{(ﬁ by (n+A) + [m(n 1) +A] }

and sign %i/\*} is again given by (58).

Case CFE: The output and R&D values in equilibrium are obtained from (10; 14):
A
oQ* ¢ (1 - 5) —k(Bz*)" =0
n

a(Ba*) 7 |74 (n = DwN(BO) - 8)] = = 1.

n

Solving the system for Q* and z*, after some manipulations, we get

Q" = " <U { [(n=1)s(\) + 7]« }5 e <1 B 5A)>(1+a)/[zsa(15)]

n n

. % <U{[(n 1)57(1)\) +T]O¢}EK51 (1 - ?))mga(lsn,

where s(\) = w(A\)(B(\) — 8) with

and

A2n — A(1 +¢)]
n(n —eA)

1+ X)) —A(l+¢)
2n — A(1 +¢)

w(A) = and B(\) = n(

Hence, we have

sign{aaq;} :sign{[ﬁ—i—s’()\)] - O‘ilnng (0 — 1)s(\) +T]}.

And, one can obtain sign{dz*/0\} by inserting values into (15) with 6 = —(1 +¢).
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ECE

Comparative statics on 3. Fig. AT7a and A7b depict, respectively, the threshold BQS
under the AJ and KMZ model specifications. Fig. A7b reveals that in KMZ, B2S tends to be
above 1 if we consider the same values as in AJ. In particular, only if b is low enough, we have
that B2S < 1 (this result is in line with the simultaneous model). Also, we observe that under
the AJ and KMZ model specifications, 523 decreases with the number of firms and increases
with vb. Figures A8a (respectively A8b) depict the threshold B2S for the CE model for a given
¢ (a) and different values of n and « (g).

decreases with n, the elasticity of the innovation function, o, and the elasticity of demand e .

08
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Fig. A8a. CE model.
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Fig. A8b. CE model.
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Comparative statics on \jg and A\gg. Fig. A9 is a snapshot of the application and
plots welfare, consumer surplus, profit, price, cost, ¢* and z* as functions of A (for 8 = 0.65 and
n = 6). Note that profit at equilibrium can decrease with A for A sufficiently high. The reason is
that in the two-stage model, there are incentives to overinvest so as to reduce the rival’s output
when [ is not too high and this situation is more likely for larger values of A since B (N) is
increasing in . Recall that as A — 1 and 8 < 1, the symmetric equilibrium does not converge
to the cartel outcome which yields profits which are higher than 7*(\) for any A < 1. We have
that 7*(\) converges to the monopoly profit as A — 1 when 8 = 1 (see the explanation just
before the proof of Lemma 3). Fig. Al0a, A10b and A10c show, respectively, optimal lambdas
in AJ, KMZ and CE as functions of the number of firms. We see that under the three model
specifications, A1g weakly increases with n, whereas Agg jumps with n only in AJ (and only for

n sufficiently large).
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Snapshot of the Application
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Fig. A9. AJ model. (a =700, ¢ =500,~v="7,n=26,b=0.6)
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Optimal degree of overlapping ownership (TS and CS standard)
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Fig. A10a. AJ model. Fig. A10b. KMZ model.
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Fig. A10c. Constant elasticity model.
(a=01,e=08,0=r=1,5=0.8)

Comparison between the static and the two-stage model. In the constant elasticity
model, as in the simultaneous case, we observe that if n is small then the equilibrium is in Ry,
which implies that no overlapping ownership is socially optimal. Yet as § and n increase, A\fg

also increases.® Note that A in the two-stage game is above the static level in a large region of

S This result is consistent with the literature. For example, in a model with no overlapping ownership Spence
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spillovers. For low values of 3, the strategic effect is positive. Then, the two-stage model behaves
differently than the static model in that welfare can increase with A in Rp because it reduces
R&D overinvestment by firms. This case is illustrated in Figure A1l, where—for low S—\7g
in the two-stage model is larger than in the static model. For intermediate values of spillovers,
the strategic effect becomes negative (but remains close to zero); for higher spillover values, A\

increases with 3 more rapidly (i.e., convexly) when the strategic effect is strong.

0.35 1.0F

] 0&r

D6

04r

0.2r

" - : ] . s 0.0%
0.0 0.2 0.4 06 0.8 1.0 oo
B
—— AJg (static) . — . - AZg (static) —— Afs (static) . — . - AZ; (static)
— — A§s (two-stage) .-.-.- AZg (two stage) — — Afg (two-stage) --.-.- Agg (two stage)
Fig. Al11. Constant elasticity model. Fig A12. AJ model.
(a=0.1,6=08,0=rk=1,n=28.) (y=7,n=6,b=0.6.)

In the AJ model, we find that Arg and A&g are weakly larger in the two-stage case (see
Figure A12). In contrast with the static model, the simulations indicate (for § = 0.65 and
n = 6) that prices may be hump-shaped while cost decreases with \; correspondingly, output
per firm is U-shaped when R&D per firm increases. The welfare translation of the increase
in A displays U-shaped consumer surplus and increasing profit per firm, which results in an
interior solution for welfare that features a large positive value of A\pg (see Figure A9) with

g = 1> A5g > 0.

This becomes possible when the strategic effect is positive and strong enough. Then there
is overinvestment in R&D during the first stage, which boosts output in the second stage. The
strategic effect becomes positive for intermediate values of 5 when A is sufficiently high. For
an intermediate level of spillovers, total surplus is not maximized with full cooperation because

that would entail too much production (reducing firms’ profits).”

(1984) used numerical simulations to demonstrate that an increase in 8 reduces z* and that, for a given 8 and
n > 2, the cost reduction relative to the social optimum declines with n (see Spence 1984, Table I). It is socially
good then to increase the degree of profit internalization.

"More precisely, since 325 decreases with ), it follows that—for a given 8 and a sufficiently high A—we have
B8 > 2% and so the equilibrium is then in Ry, where CS increases with A (CS is strictly convex in A and so
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Figure A13 shows optimal lambdas for KMZ as a function of § in the simultaneous and
two-stage model. As in AJ, we can have \&g > A\pg for intermediate spillover values (because

of the strategic effect).

Optimal degree of overlapping ownership (TS and CS standard)
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Fig. A13. KMZ model.
(a =700, ¢ =500,y =55 n=2,
b=0.2)

The pattern of results in our comparative statics analysis of the other parameters in AJ,
KMZ, and CE is similar to that for the one-stage game (see Table A5). The only exceptions we
have found are as follows. In AJ: although decreasing b enlarges the region where A\g&g = 1 is
optimal (as in the static case), A\&g can be lower than 1 (for a sufficiently low b) when spillovers
are sufficiently high. In KMZ: although A¢g is independent of n in the static case, in the

two-stage game it can decrease with n when there are few firms in the market.

B Bertrand competition with differentiated products

B.1 Framework and equilibrium

In this Section we establish the framework and solve for the interior equilibrium of the model

by deriving the FOCs.

Ags = 1 when CS(1) > CS(0)). In particular: for 8 = 0.62, the equilibrium is in Ryr when A > 0.41. Here the
strategic effect is positive since B(A\) > 0.62 for A > 0.24. Furthermore, if A > 0.69 then the strategic effect is
strong enough to reverse the sign of the effect of dz*/OX on W’()) (i.e., to make it negative); as a result, in a
neighborhood of 8 = 0.62 there is a global maximum for W(\): even if the equilibrium is in Rt we have that
W’(X) < 0 for high values of A, which implies Afg € (0,1).

39



We consider an industry with n differentiated products, each produced by one firm. The
demand for good i is given by ¢; = D;(p) where p is the vector of prices. Goods are (strict)
gross substitutes, 0D;/0p; > 0, j # 4. Assumptions A.2, A.3 and A.4 (with H as defined below)

are maintained, we replace Assumption A.1 by the following one:

Assumption 1B. For any product i, the function D; (-) is smooth whenever positive, down-
ward sloping, products are (strict) gross substitutes with 0D;/Op; > 0, j # i, and the demand

system D (-) is symmetric with negative definite Jacobian.

Under Assumption 1B the demand system can be obtained from a representative consumer
with quasilinear utility and can be inverted to obtain inverse demands (see Vives 1999, pp. 144-
148). Furthermore, it follows that the demand for a variety when all firms set the same price
(the Chamberlinian DD function) is downward sloping since the own-price effect dominates the

cross-price effects:
0D;
Opi

0D;
Opi

+(n-1)=2L<0,j#i

v =

It follows that vy = 0D;/0p; + A(n — 1)0Dy,/0p; < 0. The innovation function is defined as

in Cournot. The firm 4’s profit now writes as

™= <pz‘ —c (Cl?z + 0 §%>> Di(p) — I'(x:)

and the objective function for the manager of firm ¢ is again: ¢, = m; + A >, i Tk, thus

¢ = (pi —c <$z +B> 3«"3)) Di(p)—T(xi)+A > [(pk: —c (wk +B> x])) Dy(p) — F(%’k:)] :
J#u k#i Jj#k

B.2 Simultaneous model

The FOCs for an interior symmetric equilibrium are

g;j; = Dz(p) + (pi — Ci) ag;(zp) + /\%&:Z (pk: N Ck) 8Dal;(zp) -0, (59)
% = —d()Di(p) — T'(x;) — A Z ¢ (-)8Dx(p) = 0. (60)
! k#£i

The symmetric equilibrium is the pair (p*, z*), with ¢* = D;(p*) where p* = (p*, ..., p*) for all
i, that solves the system (59)-(60). The FOC for price in the symmetric equilibrium is

dD;(p*)
Opi

0Dy(p*)

= 0.
Opi

¢+ (p" — c(Bx7)) +A(n = 1)(p" — c(Bz"))
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Note that v < 0 ensures that p* — ¢(Bz*) is strictly positive for all \; the above condition can

be rewritten as

(p” = c(Ba")) ODipY) p°a™ 4y "= elBa") ODk(P") p'a” _,

p* dp;  Di(p*) p* dpi  Dr(p*)

7+

Using the notation: 7; = — (9D;(p*)/0pi) (p*/Ds(p*)) and 1, = (0D (p*)/dpi) (p*/Dr(p")),
k # i, we can write

_p*—c(Bzx") 1)p* — ¢(Bz*)

1 n; + A(n — pe N, = 0.

*

From the above condition and from (60), a symmetric (interior) equilibrium will satisfy the

following two conditions:

* — ¢(Bx* 1
oAb ; (61)
p ;= A = 1)ng,
—d(Bz*)g*t =T"(z"). (62)
Note that the latter condition is also obtained in Cournot oligopoly.
Finally, we assume the following parallel regularity conditions to the Cournot case:
Ap = Opp, @i + (0= 1)Opp, 0 < 0 (63)
and
A= APAJE - [aripi¢i + (n - 1)8pj1"z‘¢i] [a’mpzd)z + (n - 1)8wjpi¢i] > Oa (64)
where

Ay = xzx,d)z + (TL - 1)8xzxj¢z

Since Oy, ¢; = —¢"(Ba*) [1 + Mn — 1)%] ¢*~T"(2*) and 80,6, = —¢”'(Bz*) [t + A (1 = B)] Bg*,
it follows that
A, = —"(Bz*)g*tB —T"(z*) < 0 (65)

under Assumptions A.2 and A.3. Together conditions (63) and (64) imply that the FOCs (61)
and (62) both have a unique symmetric solution if they hold globally, and we assume that a

symmetric regular equilibrium exists.

B.2.1 Comparative statics with respect to A

In this Section we show that, as in the Cournot oligopoly model, if dz*/OA < 0, then dp* /O > 0
(Lemma B1). Secondly, we derive the signs: sign {dxz*/0A} and sign {0p*/OA} (Lemma B2).
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Finally, we discuss conditions that identify the three regions in Bertrand competition with
product differentiation.

As in the Cournot oligopoly model, we can establish
LEMMA B1 In the symmetric equilibrium, % >0 if % <0.

Proof. By totally differentiating the FOC 0¢,/0p; = 0 with respect to A\ we obtain:

op* op* or* or*
8pim¢i§ + (n — 1)8Pipj¢ia + 8%1%-@@ + (n — 1)6‘iji¢ia + Op;#; = 0.

Therefore,

W _ 1
oA 81%‘171' ¢; + (n— 1)8Pipj o8

8 *
{amd)i + [Oeipi i + (0 = )02, (‘Bx)\} ‘

Using the stability condition A, < 0, it follows that

. op* . or*
sen { G b = sign {00, 01+ 02,05+ (0= D010] G |- (66)

Since Oxp,¢; = (n — 1)(p* — c(Bz*))0Dy(p*)/0p; > 0, we have that

or* op*
< = - _ Moy .
o <0= 0 > 0 when ¥ = 0y,p,¢; + (1 — 1)0s,p,0; <0
Note that
0Di(p*) 0Dy(p")
_ o / * _ _ / *
Opip; @i = —c (Bz") o A(n —1)c(Bzx™)p ;i
9Di(p") ODL(P") | 1iry
N el N el AR T
[ Opi M ) Opi ¢(Ba’)
The expression 0y,p,¢; can be obtained from (59):
9Di(p) 9Dy (p") 0Dk (p")
_ * _ / ¥\ TR\ _ / * TR\Y
Or;p; 9 = —c(Bx")p o A (Bx™) ;i A(n —2)d(Bx™)p op;
9Di(p*) ODL(P )] 4
= — g — gy 2RI 1(Ba).
75 (5 - ) PR ()
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Using the above expression we can write

0 = {20 xR o |55 a5 - ) CERED L e
= —{B2E) a5 - 0] PO e
= [Ba%'g’*) +A(n — 1)3‘917(;?} ¢ (Ba*)
- -B [8%2)*) +A(n — 1)8178’“]?] ¢ (Bz*).

Assumptions A.2 and v < 0 imply that ¢ < 0.1
By totally differentiating the FOCs with respect to A and solving for dp*/dA and 0x* /O

we obtain:

op* 1

O\ = Z {ani¢i [8ripi¢i + (n - 1)8wjpi¢z'] - 8)\pi¢iAiﬂ} (67)
and

ox* 1

I\ = Z {akpigbi [8mzpz¢l + (n - 1)8Pj1i¢i] - akwigbiAp} : (68)

To obtain sign {0z*/0A} and sign {Jp*/OA} we next derive in turn each of the expressions

contained in equations (67) and (68). After some manipulations we can establish:
axzngbl + (n - 1)a$jp¢¢i = —BU)\C,(Bl'*),

azzngbz + (n — 1)6pjxi¢i = —T’l)c’(B:E*).

We also have that
e 0; = —(n — 1) (Bz™)Bq" > 0,

0Dy (p*)

> 0.
Op;

D¢ = (n = 1)(p" — c(Bz"))

Finally, we need the expressions for A, (the expression for A, is given by (65)). Recall that
Ap = Opp, 9 + (1 — 1)0p,p, ¢;- By differentiating and evaluating in the symmetric equilibrium,

we obtain

Oty = 270 (5 — () | T2 o= ) TP

and, using that in the symmetric equilibrium 8D;/8p; = dD;/0p; and 82D, /dp;0p; = 9*D;/Op;Op;,

oD;(p*)

2D, (p* 2 *
Opip; 0 = (1 +X) o (p" — c(Bz")) [(1 +>\)8L(p) +A(n— 2)%(1))

Op;Op; Op;jOp;

} . (69)
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Thus,

- A 1 9°Di(p*) &’ Di(p)
A, = v+uy U)\(n 1){71_1 2 + A o2 (70)
0”Di(p") 82Dk(p*)} }
+ I+ —————+ A —2)—/——F—| ;.
R a7
Therefore,
A =—Ay ("(Bz*)¢* 1B +T"(2*)) — TBuov) (c’(Bx*))Q.
Under regularity condition A > 0, then:
agn{ o\ } = sign {7’ (p* — c(Bz")) “op v—PBq A, (71)
and
sign { %]; } = sign {—(n — 1)d(Bz*)Bq" [~ Buxd (Bz*)] — (n—1)(p* — c(Bac*))Ob’DgS))Am} ,
thus
sagn{ Y } = 51gn{ BpBq* vy (Bz™) + (p* — ¢(Bz™)) oy (Bt | (72)

Clearly, from (71) and (72), and in line with the Cournot oligopoly model: for § = 0, dz*/OA < 0
and dp*/OX > 0. Let P'(c) be the cost pass-through coefficient P'(c) = dp*/dc; for 8 > 0 we

can establish the analogous to Lemmata 1 and 2:

LEMMA B2 In the symmetric equilibrium

oz* oD (p*
sign { ;;\ } = sign {ﬁ — P'(c)ngpgip)} , (73)

where P'(c) = vy/Ap >0, and

sign { 881;? } =sign{H — BB}, (74)

where

o — 9Dk(P")/0pi {_C”(BSU*)BT’(fB*)
(ur¢ (Bx*))? c(Bx¥)
Proof. Inserting the FOC with respect to the price, p* — ¢(Bx*) = —¢*/v,, into (71) yields

+ r”(m*)] . (75)

sign {0z /ON} = sign {—Tal)a’“y <”> - mp} .

U
By computing the total derivative of d¢,;/0p; = 0 with respect to the cost ¢, we obtain P’(c) =
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vn/A,, and therefore (73). Using again the FOC: p* — ¢(Bz*) = —¢* /vy, and equation (65), we

get

1 0Dk(p")
uad (Bx*)  Op;

sign { %p; } = sign {—Bﬁwc'(Bx*) - [—"(Ba*)q* (rB) — T (2")] } .

Noting that the FOC with respect to R&D investment can be re-written as ¢* = I'(z*) /(= (Bx*)7),

and using that v)c/(Bx*) > 0, we have

X * "R 1o
sign { c‘;p)\ } = sign {—B + 3 (v,\c’(lB:n*))Z 8D§1$) s (Bj(éif) &) + F"(x*)] } .
As in the Cournot oligopoly model we define the function H for Bertrand competition with differ-
entiated products as shown in equation (75). Thus, in the symmetric equilibrium: sign {9p*/OA} =
sign{H — fB}.1

In Cournot we showed that sign {9q*/0\} = sign {8B — H}. The reverse of the terms inside
the curly brackets is explained by the different type of competition (price/output competition)

in the two models. Assuming that I > 0, we can rewrite H as follows:

0D O, o [ (Ba)Ba ')
H_(U)\C/(BSU*))2 (%) d(Bx*) T (x*)x*

+1]. (76)

By defining, as we did in the Cournot model, x(Bz*) = —¢"(Bz*)Bx*/d(Bx*) > 0, y(z*)
F”(.’L'*)ZL'*/F,(LU*) Z O,
(¢ (Ba*))?

aDgp(fJ*) F”(l'*)

(g, 2") = > 0,
and by replacing these terms into (76) we get

H =

Bz*

e (e
Note that the only difference with respect to the Cournot model is that here the expression
for the relative effectiveness of R&D (&) takes into account the fact that products are now
differentiated. In Cournot: ¢ = —(¢/(Bz*))?/(f(Q*)I”(z*)); in Bertrand with differentiated
products, however, the term (f')~! is replaced by v, 2 (GDk(p*)/ﬁpi)_l

We can proceed as in the Cournot model and define the corresponding three regions: Ry,
where 9p*/OA > 0 and 0z*/OX < 0; Ry where dp* /0N > 0 and 0x*/OA > 0; Ry where
Op*/OA < 0 and 0z*/OA > 0.

Regarding Ry, because of gross substitutes (0D (p*)/0p; > 0), we can have dz*/OX < 0

for all 5 (73). This is the case when —A, < A (90Dy(p*)/0pi)v/vy. Regarding the spillover
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threshold between Ryp and Ryr, note that here, as in Cournot, Assumption A.4 implies that
the equation H — BB = 0 has a unique positive solution, which again we may denote by 3’.
It follows that for 3 > 3, dp*/OX < 0. Furthermore, Ry exists (because the threshold ' is

strictly lower than 1) when n > H(1).

B.2.2 'Welfare analysis

Welfare (with quasilinear utility) at a symmetric equilibrium is given by
W =U(q") — ¢(Bz*)ng* — nl'(z*),

where q* is the equilibrium output vector and U is the utility of a representative consumer,
assumed to be smooth and strictly concave (i.e., with a negative definite Hessian). By differen-

tiating with respect to A:
oU (q*) og* oz*
! — _ B * _ / B E3 B E3 1—\/ * .
W' (\) <Z 7{9% ne(Bz )> o (nc( x*)Bq* + nl'(x )) Y

7

From the maximization problem of the consumer: p; = dU(q*)/dqi, so

W'(\) = (p* — c(Bx*))naaq; — (nd(Bz*)Bq* + nI'(z*)) a;;

From the FOC with respect to price: p* — ¢(Bz*) = —q¢* /vy, and from the FOC with respect
to R&D investment: I(z*) = —/(Bx*)q*, thus

ox*
152

W'(\) = —ina;)\ — (nd (Bz*)Bq* — nd'(Bz*)q*7)
_g oq* o N Oz*
U)\na/\ nc' (Bz*)q" (B — 1) T

From the demand definition, ¢* = D;(p*(\)) we have that dg*/OX = v (0p*/ON). Using that
B—7=(1-X)p(n—1), we finally may write

v Op* or*

W'(\) = — o O + (1 =XN)B(n—1)d(Bz") N

ng*. (77)

Thus,
e in Ry, where 9z*/0\ < 0 and 9p* /O > 0 (so g* /I < 0): W'(X) < 0.
e in Ry, where dz*/OA > 0 and dp*/OX > 0 (so dg*/OX < 0): W'(\) < 0.
e in Ry, where dz*/OX > 0 and 9p*/OX < 0 (so dg*/OX > 0): W'(A) > 0.
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From (67), it follows that

aap; _ (n —Al)q* {(c’(Bx*))zﬁBv/\

. aDk(p*)/apz [

"(Bz*)q* Bt + T (a%)] } . (78)
vy

Similarly, from (68), after some manipulations, we obtain

dz*  (n—1)¢*(—c(Bx*)) 0Dy(p*) Ay v
i

By inserting (78) and (79) into (77) we obtain

iy (m—=1)n ¢*2 0Dy(p*)
=T o (80)
where
_ (C’(B;U*))Q BB(—v) v ; o o
ho 9Dy (p*)/9p; * )2 ["(Ba")q" Br +T"(a")] (81)
+ (C,(B:L'*))2 (1 _ )\)B(n _ 1) B (—Ap) v

e — T
ODk(p*)/dpi va

Remark B1. Consider the case of independent products, 0D (p*)/0p; = 0. If the local
monopoly problem is well-defined we have: (i) if 8 > 0, then AMpg = A\gg = 1, whereas (ii) if
£ =0, then A has no impact on total surplus or consumer surplus.

Proof. It follows immediately from equation (71) that sign {0x*/90A} > 0 for § > 0 and
0z*/OX = 0 for f = 0. Similarly, from equation (72): sign{dp*/OA} < 0 (or equivalently
sign {d¢*/ON} > 0) for B > 0, while dp* /O = 0q* /OX = 0 for § = 0. Using (77), W'(\) > 0 for
all X if 8 > 0, thus A5g = 1. Since sign {C'S"(\)} = sign {9q*/O\}, we also have that A\&g = 1. If
B =0, clearly from (77), W/(X\) = 0; note that for dDy(p*)/0p; = = 0, FOCs do not depend
on \.W

B.3 Two-stage model

We first derive the FOCs and the expression for S()) for the Bertrand case. We then discuss

the strategic effect and welfare in Bertrand with two stages.

Interior equilibrium and threshold 3()\). Let

oD;(p”) 0Dy (p*)
= *Tpiampi@f)i + ATpi [(n = 1)Opip; b — (0 — 2)Bp,p, 0] -
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Then, using (36) we can write:

20 =~ () (B - 5). (52)
where
Q= (Opipi®i — Opip; 01) [Opipi @i + (n = 1) Opip, 4] (83)
and
BV = = | Tp 00~ A8 g, ). (31)
The denominator of B()\) is positive since ¢ < 0:
P = 81)811(9?*) Opipi Pi + )‘aDg];p*) [(n = 1)8pip; & — (1 — 2)Dp,p, 6] (85)
= _8%](;*) Opipi Pi + A@Dg}i:)*) [Opip: @i + (= 1)Opip, &) — )‘({)Dglgf*)(n = 1)0pip; b
_ AWAP — Oy, 81)5](;*) + A(n— 1)81)5? <0.
Therefore, if
) Oy~ AT, 00 < 0 (56)

then 3(\) < 0. Condition (86) is satisfied in the case of linear and constant elasticity demand
with differentiated products (see analysis below).

Finally, note that in Bertrand at the symmetric equilibrium FOCs boil down to

¢+ (p* — ¢(Bz"))vy =0 (87)
and
/ Op*
—d(Bx*)rq* = T'(2*) + (n — 1)2;’ <8ZJZ) =0. (88)

Strategic effect. The strategic effect is

0 . a
P(x) = (n — 1)@@(1’ (X)ux)aixipj (x). (89)
Next we show that 0¢;/dp; is strictly positive for A < 1. We then show that dp}/dx; < 0 with

strategic complements price competition and S high enough, and as a result the strategic effect

is negative.
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We can write the FOC with respect to R&D as

aii@(p*(x),x, A) + (n— 1)%¢i(p*(x)’){’ )‘)aip;(x) o,

and

2 e0.x N = 0 - e(Br) P2y g g o(pa) aDj(p*)}

Op; op; Bp;

0D (p*
FA( — 2)(p — (Bx) a]f ).

which can be rewritten as

£¢i(p*(x),x, A) = _U(i* [a%]()f)*) +)‘8Dajg)*) A 2)5’17(%5?“} A, (90)

where we have used the FOC: (p* — ¢(Bx)) = —¢*/vy. To show that d¢;(p*(x),x,)/0p; > 0,

we rewrite (90) as follows:

d . —q* [3Dz’(p*) oD;(p*) 90Dy (p*) ]
—¢; X),X,A\) = + A +A(n—2)——— —
apj¢ (P"(x),x,A) o o, ; ( ) ; A
—q* [0D;i(p*) , ,0D;(p") 0Dy (p*)
= + A + A —2) =2
() [ Op;j Op; (n=2) Ip;
0D;(p*) 0Dy (p*)
(=R =P
A ( Op; FAn=1) opi

Using now that in the symmetric equilibrium 0D;/0p; = 0D;/0p; and 0D;/dp; = 0Dy, /0p; =

0Dy, /Op; for i # j, j # k, i # k we can rewrite the above expression as follows

9, —q* 0D;(p*)

* — j— —_ 2 —
p; ¢;(P*(x),x,A) = . [1+X(n—2) =X (n—1)] p; (91)
=, 0Di(pY)
i (1—-X) Aiapj >0 for A < 1.

We now show that 9%¢,/0z;0p; is negative or positive depending on whether 3 is high or
low. Note that:

¢,
0x;0p;

dD;(p*)
Op;

OD(p*)
Op;

(x) = —c(Bx) +A(n—-1)p
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and

8*9; / [ OD;i(p*) , 0D;(p") 3Dk(P*)]
! (x) = —d(Bzx + A2 +A(n—2)—2—=~
Ox;0p; (Bo) 9 Ip; Ip; ( P Ip;
9D;(p") 9Dk (p*) 9Dy (p")
_ _ _
= —d(Bx) {ﬁ [ p; +A(n—-1)8 0, +(1-p8)A o )
Therefore, 9%¢;/0z;0p; < 0 for 3 high enough. From (36), we have
a 1
aT:ipj (x) = Q (a:cmi ¢i8pipj ®i — O p; @i Op,p; ¢z’) )
where in the symmetric equilibrium, and using that p* — ¢(Bx) = —¢* /vy,
0D;(p") (—q*> {32Di(p*) 82Dk(p*)}
Dpyps s (X) = 2 + A — 1)
pipi Pi(X) s ™ (api)2 (n—1) (3]%)2
and
9D;(p*) (—q*> [ 8*D;(p*) 02Dk(p*)] 9D;(p")
By b (X) = + 1+ NP 4 A(n—2 A L (92
b 01(X) Ip; o) [P Op;Opi (n=2) Op;Opi Ipi (92)

Strategic complements price competition dp,;; ¢;(x) > 0, together with the assumption A, <
0, both imply that © > 0. Note also that the assumption v < 0 implies 92¢,/0x;0p; < 0, and

since the expression for 92¢,/ Ox;0p; becomes negative for 5 high enough, we can establish:

*
Dj
Xy

< 0 with strategic complements price competition and S high enough,

in which case the strategic effect is negative and firms adopt a "puppy dog" strategy (Fudenberg
and Tirole 1984): increasing x; decreases the prices of rivals because a larger z; shifts the price
best reply of firm j inwards as 82¢j /0x;0p; < 0 and also shift inwards the price best reply of
firm 4 since 9%¢;/0x;0p; < 0. The result is that the strategic effect is negative (1) < 0) and we

have puppy dog investment incentives.

Welfare. From our previous analysis:

W) = (p* — c(Bx*))n%q; ~ (nd(Ba*)Bg* + nI'(z")) %f |
The FOC with respect to x is
(") = ~¢(Ba*) [r + (0 = (V) (B0 - 8) | " (93)
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Inserting the FOCs p* — ¢(Bz*) = —¢* /vy and (93) into the expression for W/(\) we obtain:

1 9q”

W’<A>={ 0wl (LESEVERA Y (B(A)ﬁ)}(nl)c’(Bz*>%ﬁ*}nq*. (94)

In Cournot when the strategic effect is negative (i.e., (B()\) — 5) < 0) , the sign of the impact of
A on welfare in each region (R, Ryy and Rypp) is the same in the simultaneous and the two-stage
model. This is the case also with Bertrand competition and § high (puppy dog strategy).

B.4 Model specifications

In this section we characterize the model with linear and constant elasticity demands analogs
to AJ and CE. For each case, we first consider the simultaneous and then the two-stage model.

B.4.1 Linear model

Model specification: main assumptions. We assume the following: D;(p) = a — bp; +
mzj 2i Dj with a, b, m > 0; this linear direct demand obtains from a representative consumer

with the following symmetric and strictly concave quadratic utility function:

n 1 n
Ulq) = w1 Zqz‘—§ <u22q5+2u32qz-qj> ;
= ;

i=1 i

with ug > ugz > 0, u; > 0, and where

U1
T
uz + (n— 1) us
b= uz + (n — 2)ug
[ug + (n — 1) ug] (ug — usg)
and
m = s

[ug + (n — 1) ug] (ug — ug)’
(See Vives 1999, pp. 146-147.)

The innovation function of firm i is ¢; = ¢ —z; — ) i T and the cost of investing x in
R&D is given by I'(z) = (7/2)x?. Linear demand satisfies Assumption 1B, the innovation and
investment functions satisfy Assumptions A.2 and A.3. Under this model specification, we have
v=—=b+ (n—1)m, and vy = —=b+ A(n — 1)m. According to the above analysis, we impose:

v<0,ie b>(n—1)m.
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Simultaneous model. Interior equilibrium. By solving the FOCs and using that in the

symmetric equilibrium ¢* = a 4+ vp*, we derive the symmetric interior equilibrium:

o= vy (Bat — é&y) + ay
A

and

. T(—vy) (¢v + a)
A )

Second-order, stability and regularity conditions. It is straightforward to obtain that
Ay =—v, Ap=v+uvy=-2b+(n—1)m(1+ ), and A = —(v + v))y — vu\BT.

Because demand is linear, the regularity condition A, < 0 is implied by the assumption v <
0. We thus only have to impose the second regularity condition (64), therefore we assume
—(v 4 va)y > vuaB7. Second order conditions are: Op,p,¢; = —2b < 0, Op,2,0; = —y < 0 and
Opips D3 (O 0i) — (Bip; &) > 0, which is equivalent to 2yb > [~b + A(n — 1)8m]>.

Table B1: Linear Bertrand Model

Demand Di(p) = a—bp; +m Ej;éi Dj
¢ = C— i — B 4T
P(z) = (1/2)2?

v = b+ (n—1)m

vy = —b+An—1)m
S.0.C ¥b > [=b+ A(n — 1)8m]* /2
Regularity Condition [~ (v+wy) /vua]y > Bt

Comparative statics on \ and spillover thresholds. Recall that only R exits if

—Ap < (0Dg(p*)/0pi) A(v/vy), ie., if

(Y

—(v+wvy) <mA () , (95)

VX

otherwise we can identify Ry and Ry by deriving the corresponding spillover threshold. From

(73):

A UA
&gn{ o\ } = sign {B [— (v+wy) P A(n — 1)m] — m} .
Therefore,

m[b— (n—1)m)]

ifg<pA)= An —1)2(A+2)m2 —4b (A +1/4) (n — 1)m + 202’
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then 0z*/0OX < 0 and 9p*/OX > 0 (Ry). It is easy to see that 3 (A) depends only on m/b and

that it is hump-shaped in m/b (with 3 (A\) = 0 for m/b = 0 and for m/b =1/ (n — 1)).

2
NOtethatX:O,yzlandgzw,so

my

my
[b—A(n—1)m]*

Since vy < 0, H is strictly increasing in A. Thus,

sign{aapA } =sign{H — 8B}.

It follows that:

g —14+/A4Hmn -1)+1

2(n—1)

As H is strictly increasing in B, so is 3’ (in AJ and KMZ ' is independent of \).

(98)

Figures Bla and B1b depict the spillover thresholds and the three regions. The threshold

for Ry and Ry is given by (96), whereas the threshold for Ry and Ry is given by (98). For

illustrative purposes we consider two cases that only differ in the number of firms. In Figure

Bla, n = 8, and condition (95) is not satisfied for any value of A if § is sufficiently high,

and consequently Ry and/or Ryy exist. In Figure Blb, n = 10, and condition (95) holds for

A > 0.882. Thus, for A sufficiently high, only R; exists irrespective of the spillover level.

Spillover thresholds and regions Ry, Ryr and Ri®

B B

1.0f B'(A) 1.0} B (A)
RII -l
0.8 0.8
0.6/ RIl 0.6 RII
o48__ 0.4/ 2
B _____._._.__
0.2} 0.2f
RI
0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10"

Fig. Bla. Linear Bertrand model.
(n=28) (n = 10)

Fig. B1b. Linear Bertrand model.

Comparative statics on [3'. Straightforward calculations show that the threshold 8'(\) is

strictly decreasing in b and strictly increasing in . These results are in line with the Cournot

model.” We also obtain that 8’()\) is strictly increasing in the slope of the direct demand

8 All simulations are conducted for a = 700, & = 600, b = 1.4, m = 0.12 and ~ = 70.

°In Cournot 3'(0) is strictly increasing in b (see Table A3); recall that b is the (absolute value of the) slope of
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with respect to rival prices, m. This follows since H has the same properties. However, H is
increasing in us/ug for ug/uz low (local monopolies) and decreasing in wus/ug for us/ug close
to 1 (homogenous products). Therefore 3'()) is non-monotone in ug/us. It can also be showed
that as in AJ and the CE model, 3'(0) is strictly decreasing in n (the threshold does not depend
on n in KMZ), and therefore in terms of consumer surplus it is optimal to suppress overlapping
ownership for any level of spillovers when firm entry is insufficient. In particular, this is the case
in Bertrand with linear demand when n < m~/b?, in which case 3'(0) > 1. More generally, the
sign of 9B’ (\)/dn for some X € (0,1) depends on the level of A and n. Numerical simulations
show that for low or moderate values of A, 93'(\)/dn < 0, whereas for high \, 98'(\)/dn > 0

if n is sufficiently high.'"

PROPOSITION BL1 Under the linear demand specification, if — (v + vy) < mA (v/vy) then
only region Ry exists. Otherwise, assume n > H(1), where H is given by (97), and let 3 (\)
and (' be given, respectively, by (96) and (98). Then the following statements hold:

<BN), then%<0and%§0(}%1);

(i) if B
(i) if B(N) < B < B (N), then & <0 and 95 > 0 (Rp);
(iii) if B> B (N), then 9 >0 and % > 0 (Rm).

We have that both 8 (X) and 8" (X) are increasing in A and hump-shaped in us/uz, and 83'(0)/dn <
0.

Profit. Simulations show that also in Bertrand with differentiated products and linear
demand, profit in equilibrium is strictly increasing in the degree of overlapping ownership:
7™ (\) > 0.

Welfare. First, we derive the threshold, 3, above which welfare increases with A starting
from A = 0. We obtain 3 from the condition W’(0) > 0. Using (80), we only have to solve

F|y—o = 0 for 3 to obtain the expression for $. In particular, we have to solve

+—57-B(n—-1)

m Uy

VX

_ BB v {ﬁ(bqtv)_i_ U:|:07
m

or, equivalently,

va%(n—1)(b—2v)B% — vyv vy +m(n —1)] 8 +vym = 0.

the inverse demand in Cournot, while it is the slope of the direct demand with respect to own price in Bertrand.
"For example, for b= 1.5, m = 0.1 and v = 60, 98’ (\)/On < 0 for n = 2.5, but 9B'(\)/On > 0 for n = 6 and
A > 0.87.

54



The above equation has two roots, only one of them can be positive since the denominator of

the roots is —2b(n — 1)(b — 2v) < 0. Thus, 3 is given by

v? — v {v(n —1)2m2 +2[(4y — b)v —2by] (n — 1)m + b2v}.

b= —2b(n — 1)(b — 2v)

Numerical simulations confirm that the spillover thresholds satisfy 3'(0) > .

Table B2: H and Spillover Thresholds in Linear Bertrand Model

H= my/ [b— An —1)m]?

BN = m[b— (n—1)m]/ [A(n—1)*(A +2)m? — 4b (X + 1/4) (n — 1)m + 2b%

3= <v2 — Vo {o(n = 1)Zm? £ 2[(4y — b) v — 2b7] (n — 1)ym + b%}) /1=2b(n — 1)(b — 2v)]
5 = (-14+ VIHG =D +1) /[2(n - 1)

Comparative statics on 3. As in Cournot (in AJ, KMZ and CE), the threshold 3 decreases
with n. Similarly and in line with Cournot: 3 decreases with the slope of demand and increases
with the parameter of the slope for the investment cost, 7. Regarding product differentiation:
B is hump-shaped in ug/us since B = 0 both for uz/us = 0 and u3/us = 1. Finally, also in
Bertrand 3 may take values greater than 1 (so A}g = 0 irrespective of the value of 3) when there
are a few firms in the market and v (b) are sufficiently high (low). Note that in Figures B2a-c
we assume that parameters a, b and m are fixed as n changes. This implies that parameters
u1, uz and ug must change with n (see Section B.4.1). Alternatively, we assume in Figure B2d
that parameters uy, ug and ug are fixed (such that a = 750, b = 1.5 and m = 0.1 for n = 8),
while a, b and m change with n. Results are qualitatively the same: the thresholds in B2a and
B2d are almost the same for n equal or close to 8, while they are higher in B2d than in B2a for

two or three firms in the market.
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Threshold value B
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Fig. B2a. Linear Bertrand model. Fig. B2b. Linear Bertrand model.
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Fig. B2c. Linear Bertrand model. Fig. B2d. Linear Bertrand model.

(b= 1.5, v = 60)
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04F

02f
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Fig. B3a. Linear Bertrand model. Fig. B3b. Linear Bertrand model.
(v =50, n = 6) (y =50, n=238)
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04p
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Fig. B3c. Linear Bertrand model. Fig. B3d. Linear Bertrand model.
(v =80, n=6) (y=80,n=238)

Comparative statics on the socially optimal degree of overlapping ownership. Our simulations
confirm that the main findings obtained in Cournot also hold in Bertrand; namely the socially
optimal level of overlapping ownership increases with the size of spillovers and with the number
of firms. Secondly, while the comparative statics are qualitatively similar in terms of consumer

surplus, the scope for overlapping ownership is lower. Thirdly, Figures B3a-d show that for not

'L All simulations are conducted for a = 700, b = 1.5, m = 0.1 and & = 500.
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too highly concentrated markets and high spillover levels, A = 1 can be optimal in terms of
total and consumer surplus. The thresholds 5 and /3’ (0), as discussed above, decrease with n,
and the optimal degrees of overlapping ownership A7q and A\gg, decrease with the parameter of

the slope for the investment cost, ~.

Optimal degree of overlapping ownership (TS and CS standard) 2

1.0+ 1.0F
08+ osl
06 06
04l 0ab o
O
0z2r o2}
O
O
0.0 @ ® ® ® ® ® L] 0.0L ® ® ® ® L] L] L]
2 3 4 ) 6 7 g 2 3 4 ] 3] 7 il
n n
Fig. B4a. Linear Bertrand model. Fig. B4b. Linear Bertrand model.
(v =280, 5=0.2) (v =280, 5=0.4)
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Fig. B4c. Linear Bertrand model. Fig. B4d. Linear Bertrand model.
(v =80, 5 =0.6) (v =80, 5 =0.8)

12 A1l simulations are conducted for a = 750, b = 1.5, m = 0.1 and & = 500.
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Fig. B4e. Linear Bertrand model. Fig. B4f. Linear Bertrand model.
(v =280, 5 =0.2, u; =937.5, ug = 0.7 (v =280, 5 =0.4, u; =937.5, ug = 0.7
and uz = 0.078) and ug = 0.078)
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Fig. B4g. Linear Bertrand model. Fig. B4h. Linear Bertrand model.
(v =80, f =0.6, ug = 937.5, ug = 0.7 (v =80, 8 =0.8, uy = 937.5, ug = 0.7
and uz = 0.078) and uz = 0.078)

Finally, as Figures B4a-d indicate, it is not optimal to allow overlapping ownership for
highly concentrated markets. As in the case of output competition, ;g increases weakly with
the number of firms, and as in AJ and CE, A\gg increases weakly with the number of firms

and only if n is sufficiently large given the size of the spillover.!® In Figures B4a-d we keep

Y3 Recall that in KMZ the threshold 3’, and therefore sign{C'S’(\)}, are independent of the number of firms.
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parameters a, b and m fixed as n changes, so parameters ui, ue and ug must change with n.
In Figures B4e-h, however, we allow parameters a, b and m to change with n by setting w1, us
and us at values such that a = 750, b = 1.5 and m = 0.1 for n = 8. Results are qualitatively

the same in the two cases.
Optimal degree of overlapping ownership (TS and CS standard)"*
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00k ——— = - = = = =y = 0.0k e
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Fig. Bba. Linear Bertrand model. Fig. B5b. Linear Bertrand model.
(8=0,v=150,n=5) (8=0.25,v=150, n =5)
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Fig. B5c. Linear Bertrand model. Fig. B5d. Linear Bertrand model.
(8=0.75, v =150, n = 5) (B=1,~v=150,n=5)

Comparative statics on the degree of product differentiation. Here, we fix uo = 1, and we

then compute the optimal degrees of overlapping ownership (Apg and Agg) for values of ug

14 A1l simulations are conducted for a = 700 and ¢ = 500.
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ranging from 0 (which reflects the monopoly case) to 0.92 (which reflects the case of intense

competition because of very low product differentiation). To guarantee that the regularity

condition is satisfied for usg € [0,0.92] we consider n = 5 and v = 150. Simulations show that

for B > 0, A7g is U-shaped, and so is Agg is for / sufficiently high (see Figures Bba-d). For

6 >0,i

f uz — 0, then Mg,

¢g — 1. The U-shaped pattern is robust and also appears for

higher/lower values of n and ~. In particular, in Figures B6a-b we conduct similar simulations

but assu

1.0

0.8

0.6

0.4

0.2

0.0

Two-stage model.

ming n = 8 and vy = 60.

Optimal degree of overlapping ownership (TS and CS standard)"
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Fig. B6a. Linear Bertrand model.

(8=0.1, y =60, n = 8)
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(2] o
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Fig. B6b. Linear Bertrand model.
(8=0.9,v=060,n=2_8)

Interior equilibrium. By solving the FOCs (87) and (88) with ¢ =

¢ — Bx* and ¢* = a + vp*, we obtain the symmetric interior equilibrium:

and

where s(\)

«_ ey —alln—1)s(A) + 7] By vy —ay

p

- {rv+elln—1)s(N) + 7] Bl o + vy

. va(ev +a) [(n —1)s(\) + 7]

T o= 0)s() + 7)) BYox+ vy’

= w(\)(B(N\) — B), and w(\) and B(\) are obtained below.

Strategic effect. Here, we first obtain 8p}f (x)/0z;, and we then derive the expressions

for the strategic effect of investment (1) and the threshold 3(\). With linear demand we have

Orp; 93(x) = = (Bx) [=b+ A(n — 1) fm] and Orjp, ¢;(%)

15 A1l simulations are conducted for a = 700 and & = 500.
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We also have that 0p,p,¢;(x) = —2b and ), ¢;(x) = m (1 + ). Therefore,
8pipi¢i(x) - apipj ¢z(x) =-2b— m(l + >‘)7

Opip; 95(X) + (1 = 1)0pip; ¢5(%) = =2b + (n — )m(1 + A),
Opip; i(X) = Opip, 93(x)B = m (1 + ) + 208.
Using (36) we can write

0 ., . —d(Bx)

[p(A)B — (1 = A)bm],

where Q = [~2b—m(1 + \)][-2b+ (n — D)m(1 +A)] > 0, and p(A\) = A(1+ ) (n —1)m? +
2\ (n —2)bm — 2b* < 0, since ¢(0) = —2b*> < 0, p(1) = 2(b +m)[-b+m(n —1)] < 0 and
¢©'(\) > 0. Therefore,

9 .
8a:ipj (x) <0.
From (91) we may write
0 * _q* *
5 -0i(P" (%), %, A) = {m I+ A(n—2)]=bA}+ g
Op; Ux
q*
= ——m(l-XN)A.
L1 -3

Note that (1 — A)A is strictly positive for all A < 1, thus, and as expected, for A < 1:

9 .
%@(p (x),%x,A) > 0.

Therefore, the strategic effect of investment is

oo, [ Op*
P = (n—l)aﬁ;(aijl>

= —(n- 1);1:m(1 - ) A(_C’éBx) [e(A\)B — (1= X) bm])
_ B <_3A> m(n —1) (1 A\)Afp(\)f — (1 — A)bm] < 0.

We can rewrite the strategic effect of investment as

Y = —c (Bx)qg*w(N) <B()\) - 5) )
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where
m(n—1) (1 —X) Ap()
Q’U)\

>0 and B(\) = ;(_)\;\bm < 0.

Welfare. The expression for W/(\) is given by (94). Recall that in Cournot only when the

w(A) =

strategic effect is negative, the sign of the impact of A on welfare in each region (Ry, Ry and
Ryyp) is the same in the simultaneous and the two-stage model. The reason is that the factor
that multiplies 0z*/J\ in the expression for W’(\) is positive. When the strategic effect is
positive and spillovers are low, the factor is negative and as a result, welfare decreases with A in
Ry, and can increase or decrease with A in Ry and in Rypp. In the Bertrand model with linear
demand, the strategic effect is always negative, and as in Cournot, the factor that multiplies
Ox*/O\ is positive. (Note also that —1/vy > 0.) Therefore, the sign of the impact of A on
welfare in each region (Rj, Ry and Ryy) is the same in the simultaneous and the two-stage
model: W/(\) < 0 when z* decreases and p* increases with A (as in Ry), W/(\) > 0 when z*
increases and p* decreases with A (as in Ryyr), and W/(X) 2 0 when z* and p* increase with A
(as in Ryy).

The next figures depict the threshold /Bi% above which welfare increases with A at A = 0.
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Threshold value B
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Fig. B7c. Linear Bertrand two-stage model.

(b= 1.5,7 = 60)

Comparative statics on B%% Results are consistent with those obtained in Cournot and in
simultaneous Bertrand: the threshold Bi% increases with m and ~, and decreases with n and
with b. In addition, and in line with the other models, Bi% may be greater than 1 (and thus

Mg = 0 for all ) when there are few firms in the market and « (b) are sufficiently high (low).

167 the three simulations: a = 900 and & = 500.
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Comparative statics on the socially optimal degree of overlapping ownership. Results are
similar to those obtained in Cournot with two stages: \g increases with 5 and n, and when
R&D has commitment value Afg tends to be higher than in the simultaneous model when
spillovers are high. However and unlike the Cournot model, we do not observe cases in which

A¢g > Apg. The reason is that those cases may arise in Cournot when the strategic effect is

17 All simulations are conducted for a = 900, b = 1.5, m = 0.1 and & = 500.
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positive; in Bertrand with linear demand the strategic effect is always negative. Finally, in line
with the simultaneous case, A g and A\gg decrease with 7. Note also that we do not have a

bang-bang solution for CS.
Optimal degree of overlapping ownership (TS and CS standard)'®
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Figures B9a-d confirm that it is not optimal to allow overlapping ownership for highly
concentrated markets. In line with the other models, A7 weakly increases with the number

of firms, and Agg increases weakly with n (only if n is sufficiently large given the size of the

18 All simulations are conducted for a = 900, b = 1.5, m = 0.1 and & = 500.
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spillover).

Optimal degree of overlapping ownership (TS and CS standard)"
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19 All simulations are conducted for a = 900, b = 1.5, m = 0.1 and & = 500.
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B.4.2 Constant elasticity model

Model specification: main assumptions. Consider the following form for the representative

consumer’s utility function
n 1/p 0
U= [Z 7 ] %0
i=1

with p € (0,1) and 6 > 0, and where ¢y is the numéraire and ¢; is quantity for the variety ¢
of the differentiated product. The consumer’s problem consists of maximizing U subject to the
budget constraint > ;p;ig; = Y, where Y is aggregate income. The demand functions resulting

from this problem are
—1-1/p

p.
Di(p) = 17_15,
S D, /1

where = (1 — p)/p € (0,00), and S = Y/(1 4 0) is the total spending on the differentiated
product variants; the amount of numéraire is go = 6S. Note that o = 1/(1 — p) is the constant
elasticity of substitution between any two products. As p — 1 (0 — o), products become
perfect substitutes, while as p — 0 (0 — 1), products become independent.

The innovation function is ¢; = k(z; + 8 ;4 2;)” with a, £ > 0, whereas the investment
cost function is I'(x;) = x;. Thus, the innovation and investment functions satisfy Assumptions
A.2 and A.3. CE demand, as specified, is not quasilinear, but it is smooth and downward
sloping, the demand system is symmetric and products are gross substitutes (Assumption 1B).

From Table B3, we get at the symmetric equilibrium

*

v S <0 andvf\——(nil)(li)\)+ﬁm
*2 ) -

S <0.
np n2p*2M

Table B3: CE Demand Bertrand Basic Derivatives
fori#j, j#k i#k

Di(p*)/0p —Ws*zu(n—1+nu)

azD ( *)/ apz = % (2% + 5 (n— Dnp + 3(n —2)(n — 1)]
Di(p*)/0p; = TEem
(p )/ @pj2 = nsp*sﬂ [(n —2) + ny
Di(p *)/8;0]'8}71' = n3p*3ﬂ [(n 2) +npj
Di(p*)/0pi0p; = T

Simultaneous model. Interior equilibrium. The FOCs in the symmetric solution are

given by (61) and (62):
p* —c(Bx*) 1

p* n; — A — 1)ny,’
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—d(Bx™)q¢*r =T"(z%),

where n;, = (n — 1 + nu)/np and n;;, = 1/np. In the symmetric solution: D; = Dy = ¢* =

S/(np*), ¢; = k(Bx*)~%, ¢ = d¢; /0|, _ . = —ar(Bz*)"*", and I'(z*) = 1; by solving the

T;=x

system of FOCs for p* and z* we get the symmetric interior equilibrium:

. atSA
= (99)
. K
P =7 (arSA/n)*’ (100)
where
un n—A
A = 1 - f 1.
+A—n(1+u) n—A+nu>00r}\<
Table B4: CE Bertrand Model
Demand Di(p) = Sp;kl "/ Z?zl p}l g
¢ = KT+ B4 75)
I'(z) = x
v = _S/np*Q
o = Sl D)1= A) + gl Jn2p
S.0.C rdp(n — ML+ a)(1 + p) —n2aA (un+n—A) [1+p)n—72>0
Regularity Condition A<l

with A = 14+ \(n — 1)52%

Second-order, stability and regularity conditions. We first check the stability and
regularity conditions; using (65) and (70) and from Table B3 we obtain

A, =—(1 +a)ang <0,
8, = -0 = s <0 (101)
and
A = A,A; —TBuv) (c’(Baj*))2
= %(nl)(l)\) >0
for A < 1.

Second order conditions are: (i) Op,p,@; < 0; (ii) Op,a;¢; < 0; and (iii) Op,p, s (Oniz; b)) —
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(Dp,2;0:)° > 0. Conditions (i) and (i) are satisfied:

92Dy (p*)

. 0Di(p") ¢\ [0*Di(p*)
Ot = 2P (L) [0 - 2K (102)
_ STt - N0 ()
- (L= 20— 1) + un] 2
and
Opiw;0; = —c'(Bz¥) [1 + A(n — 1)52] ¢ —T"(x*)
_ (1t n B 2
= < - >TSA [1+A(n—1)p% <.
Using that s
_ ()
apngbz - KNuT [(n - 1)(1 - B)‘) + n,u} )
we have that condition (iii) is satisfied iff
ar 2a
(452)" 4 {D—-FE}>0

2t [(n—1)(1 = \) + pn] K2Ta

where D = A3 [(=BA+p+ 1) n+ A3 —12[(n —1)(1 = \) + un) 7'5’2043% and E = n*pu(1—

A)(n—1) [1+ A(n—1)8%] (1 + a)(1 + p). Therefore, the SOC reduces to
mntu(n — WAL+ a)(1+p) —n’aA (un+n—A)[(1+p)n—7]° >0,

where A = 1 + A(n — 1)3%,

Comparative statics on \ and spillover thresholds. Recall that only Ry exits (irre-
spective of the spillover level) if —A, < (0Dy(p*)/0pi) A(v/vy); replacing terms and simplifying
the condition reduces to

pn(2A —n) — (n —1)2(1 = \)? > 0, (103)

which holds for A = 1. If (103) does not hold, then we may identify Ry and Ry by deriving

the corresponding spillover threshold. From (99) we have that

b (52 -2)

which implies that

B Ca WP 1 [ TP E ) PR PR |
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Therefore,
un
(n—1{[N+Q+p)@—-2N)]n—(1-N2}

then 0z*/0OX < 0 and Op*/OX > 0 (Ry). Simple calculations show that 03 (\) /Op > 0. Since
dp/dp = —1/p* < 0, we have that 93 (\) /0p < 0. From (100) we obtain

ifB<B(\) = (104)

op* 2K
- ﬁCEa

8)\ n—1)(1-\)aST @
(’I’L - 1)(1 - )‘)2 {n[(un-&-z?(’b—l)zl—)\)]} T

where
)\2 1 1 _ )\ 2 )\ 1
Vog = (n_l){[<—+(u+1))\— +'u> n + ( ) ]a+ Mn}6+ :un( +04)‘

It follows that

. op* ]

51gn{ 3]; } = sign {dcg}.
Consequently,

1
= pn(l + ) (105)

=1 {[N+Q+p@-2N)]n— 1=} a—un)

Using that I'" = 0 and by replacing p*, x*, 0Dy (p*)/0pi, ¢/ (Bz*), ¢"(Bz*) and I''(z*) into (75)

we obtain:
nu(l+ a)TB
(n—Nan(+p) - A

Note that sign {0p*/OA} = sign {H — B}, so by solving H — B = 0 for [ we obtain again the

H =

(106)

expression for ' given by (105).
Recall that C'S"(\) > (<)0 iff 8> (<)3". The threshold 3’ is strictly increasing in \:
o' pn(l+a) [un(1 4 2a) +2(1 — A)(n — 1)q]

A (=1 ({4 A+ —20)]n— (12} a—\m) -0

As a result, A\3g > 0 if 3 > (/(0), where

pn(l+ «)

g0 = n=1[1+p)n—-1a
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Spillover thresholds and regions Ry, Ry and Ryr2°

RIl RI

0.2
0.2 0.4 0.6 0.8 1.0
Fig. Blla. CE Bertrand model.
(n=6,a=0.5 p=0.5)
8
1.0 B'(A)
RIlI,
0.8 RII
L ——— S S
0.6
0.4 5
0.2
0.2 0.4 0.6 0.8 1.0

Fig. Bllc. CE Bertrand model.
(n=6,a=0.2, p=0.5)

Rl

RI

0.2 0.4 0.6 0.8 1.0

Fig. Blle. CE Bertrand model.
(n=6,a=0.5, p=2/3)

0.2

0.2 0.4 0.6 0.8 1.0

Fig. B11lb. CE Bertrand model.
(n=10, « = 0.5, p=0.5)

RII
RI

0.2 0.4 0.6 0.8 1.0

Fig. B11d. CE Bertrand model.
(n=10, « =0.2, p =0.5)

RIl

RI

Fig. B11f. CE Bertrand model.
(n=10, « =0.5, p=2/3)

We depict the spillover thresholds and the three regions in Figures Blla-f. For illustrative

20 All simulations are conducted for k = 1, Y = 20 and 6 = 0.05. Note that S = Y/(1+6).



purposes, we consider six cases that differ in n, @ and p. In contrast to the linear demand case,
the condition under which only R exists for all 5, which is given by (103), always holds for A
close or equal to 1. For lower values of A, Ry and/or Ryjp may exist for § sufficiently high. Fig.
11a~d show how area Ry (respectively, Ryy) increases (decreases) with «, and illustrate that
Ry increases with n. Finally, the comparison of Fig. Blla with Blle, and B11b with B11f,

display the increase of Ry with p.

Comparative statics on 3. Straightforward calculations show that 3'()) is strictly decreasing
in o and strictly increasing in p. Thus, 93 (\)/dp < 0. As in the linear demand case, 3'(0) is
strictly decreasing in n. Therefore, if '(0) > 1 for n = 2, which holds when u > «/2, then to
have 5'(0) < 1, so that A%g > 0 when 8 > '(0), the number of firms must be sufficiently high
such that

2(1—1—#)04—1—,&4—2\/[(044—%)2,LL+042+0¢ L
2(1+ p)o

n >

PROPOSITION BCE1 Under the CE demand specification, if un(2A—n)—(n—1)2(1-1)2 > 0
then only region Ry exists. Otherwise, assume n > H(1), where H is given by (106), and let
B(X) and ' be given, respectively, by (104) and (105). Then the following statements hold:

(i) if B<B(N), then % <0 and% <0 (Rr);
(i) if B(\) < B < B, then %5 <0 and % > 0 (Rnu);
(iii) if 8> /', then % > 0 and %" > 0 (Rm).

We have that 8 (X) and ' (X\) are increasing in X and decreasing in p, and 03'(0)/0n < 0.

Profit. By inserting equilibrium values into the profit function and simplifying, we obtain:

1 [nuB—ar(n—A)

W()\):E (b+1n—A

S.

Simulations show that also in Bertrand with CE demand, profit in equilibrium is strictly in-
creasing in the degree of overlapping ownership: 7*(\) > 0.

Utility. Note that the indirect utility function in not linear in income. Thus, to solve the
first-best problem we have to maximize the utility function subject to the resource constraint:
Y =37 ¢cigi+ Y T(z;) + go. At the symmetric equilibrium the utility function with this
constraint included is

V(A) = nMPq (Y — ne(Bx*)g* — na*)?
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where Y = S(1 4+ 0). Computing V'(\) and using the FOC 1 = —¢/(Bz*)7rq*, after some

manipulations we can write

Vi) = {[S (1) = ne(Ba)q* (1+0) = na”] G2 = ¢ (Ba)(n = 1)(1 = Nomg™ o } ,

where p = S(1 + 0) — nc(Bz*)q* — nz*.
We now may obtain the threshold 3 from the condition W’(0) > 0. In particular, the
equation WW’(0) = 0 is quadratic in 3, and writes as 015% + 928 + 03 = 0, where

h=al(p+)n—1(n-1)2{Sab(n —1)°Z' +[(u+1)n—1n(l+0)nu},

vy = —nn—-1){-[(p+Dn—-1]1+0)[-(n—1a+ny] (n—1)+ Spa?f(n —1)2271

Flp+1)n—1) [(n—1)042—(1+9)(n—1)a—|—n,u(1+0)]},

and
93 = —nu(a+1) [(u+1)n —1]{[(1 +60) p— o] n+a},
with
__aS(n-1)
7= [(u+1)n—1n

The threshold /3 is given by the positive root:

B _192 + A/ 193 — 4191’193

2%

Table B5: H and Spillover Thresholds in CE Bertrand Model

H= nu(l+ a)TB/{(n — AN)a[n(l + u) — A}

BA) = pn/ ((n—=1) {[A+ (L +p)(1 - 20)]n— (1 = 1)*})

8= —g + /5 — 4’191?93) / (201)

#— | +a)/ (-1 {2+ (140 - 2] n— (1= A} a - )]
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Threshold value B

1.0F 1.0
- p=0.5 a=0.5
L ] *
0.8t 0.8
x - .
0.6} 0.6 *
L [ ]
_ - _
ﬁCE ﬁCE u
0.4l x . - - 0.4 x L4 -
x . [ ] . =
x ® " . - * e =
* x *
0.2} R ) 0.2 « = T .
0.0k 0.0
2 4 5] 8 10 12 2 4 6 8 10 12
n n
= a=025 o+ a=0.5 . a=0.75 s« p=04 o p=05 . p=2/3
Fig. B12a.CE Bertrand model. Fig. B12b. CE Bertrand model.

Comparative statics on . We observe in Fig. 12a,b that 3 decreases with a and p. The
threshold as in the previous cases decreases with n and may take values greater than 1 (so
Mg = 0 irrespective of the value of 3) when there are few firms in the market. Note that we

use notation Mg with subscript T'S even though we refer to utility V.

Comparative statics on the socially optimal degree of overlapping ownership. Simulation
results are in line with previous findings: the socially optimal level of overlapping ownership
increases with the size of spillovers (see Figures B13a-d) and with the number of firms (see

Figures Bl4a-d).
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Optimal degree of overlapping ownership (TS and CS standard)*!
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Fig. B13a. CE Bertrand model.
(a=0.5, p=0.5,n=56)
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Fig. B13c. CE Bertrand model.
(a=0.75, p=0.5, n =6)
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Fig. B13b. CE Bertrand model.
(a=0.5, p=0.5,n=28)
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Fig. B13d. CE Bertrand model.
(a=0.5,p=2/3,n=06)

21 All simulations are conducted for kK =1, Y = 20 and 6 = 0.05.



Optimal degree of overlapping ownership (TS and CS standard)**

1.0

0.8

0.6

0.4

0.2

O
O
0.0 Q O Q Q 0]
2 3 4 5 6 7 8
n
o A%s
Fig. Bl4a. CE Bertrand model.
(a=0.5,p=2/3,=02.)
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Fig. Bl4c. CE Bertrand model.
(a=0.5,p=2/3, 6=0.6.)

Comparative statics on the degree of product differentiation. In Fig. Bl5a-d we depict the
optimal degree of overlapping ownership A} for p € (0,1); if p — 0T, then products tend to
be independent, while if p — 17, then products tend to be perfect substitutes. The grey area

represents the values for p and A\ where the interior (regular) equilibrium exists.?® Simulations
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Fig. B14b.CE Bertrand model. (o = 0.5,
p=2/3,=0.4.)
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Fig. B14d. CE Bertrand model.
(a=0.5,p=2/3,=038.)

22 A1l simulations are conducted for kK =1, Y = 20 and 6 = 0.05.
23That is, the second-order condition holds, and profit, cost, price, output and R&D are positive.

regularity condition holds for A < 1.)



show that for 8 > 0, A\fg increases towards 1 when p — 1. However, A\q is not U-shaped; the
reason is that the monopoly case is not well defined with CE demand: when p — 0, the price p

tends to infinity, and therefore the output ¢ tends to zero.

Optimal degree of overlapping ownership**

A T T 1O S
0.8 3 0.8
0.6 ] 0.6
0.4 : ; 0.4
0.2 0.2
0.0 0_0g g . . e

0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.8

P p
Fig. B15a. CE Bertrand model. Fig. B15b. CE Bertrand model.
(¢ =0.5, 8=0.25,n=6) (=05, 8=0.5,n=06)

10 1O S
o8l 0.8

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

p P
Fig. B15c. CE Bertrand model. Fig. B15d. CE Bertrand model.
(a=0.5,8=0.75, n = 6) (a=0.5,8=1,n=56)

24 All simulations are conducted for k =1, Y = 20 and 6 = 0.05.
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Two-stage model. Interior equilibrium. The interior equilibrium is characterized by the

two FOCs (87) and (88), which at the symmetric equilibrium can be written as follows
¢+ (p* —c(Bx*))vy =0

—d(Bx*)tq¢* =1+ =0.
Next we derive the strategic effect, ¢ = (n — 1)(0¢;/9p;)(9p}/0z:).
Strategic effect. The expression for 0¢;/0p;, which is strictly positive for A < 1, is given by
(91). The expression for 9p;/0x; is computed in (82): dp;/0x; = — (¢'(Bx)/Q) (—¢) (B()\) - B).
By inserting equilibrium values into the definition of €2, given in equation (83), we get

{(n=1)[(1 + p)n+ A +1} (arSA/n)* (n — 1)S2A%(1 — 1)2

= W [0 — D)1= X) + pn] 727

> 0.

The term ¢ is defined in (85). By replacing 0p,p, ¢;, given by (102), A, given by (101), and
0D;(p*)/0p; and 0Dy (p*)/0p; provided in Table B3, into ¢ we obtain

AR (2SAY (1 1) (1 = A) [n(1 + p) + A] 52
2

= <0. 107
" Yy, (107)

To obtain /3 (A) we first have to calculate dp,p, ¢;, which using equation (92) and Tables B3 and

B4 can be shown to be

9, b = A(l=XN)S
PRI (n = 1)(1 = A) + np] pp*n?’
As a result we have that
4o
ODi(p") 0D, (p*) At (4T3A) ™ (1 - )82
Tpiapipj ¢7, B Aajipzapzpz¢z = n4m4u2 y (108)

which is strictly negative for A < 1. By inserting (107) and (108) into (84), and simplifying, we

get
~ 1
PN = <"

Consequently, the strategic effect is:

g oD;(p*) [ d(Bx*) ~
w——a(n—l)(l—/\)/\ 7l (=) (BA) = B)| -

Let




then the strategic effect is shown to be negative:

¥ =~ (Ba")g'w(V) (B - 8) < 0.
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