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Abstract

This article analyses network competition in a two-period model in which consumers

face costs of switching from a network to another. I show that (even symmetric)

networks with consumers�full participation can use reciprocal access charges to soften

competition in two-part tari¤s. In particular, the total discounted pro�t increases when

the second-period access charge departs (in any direction) from the marginal cost. This

result holds both for naive and rational consumer expectations, and has clear policy

implications.
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1 Introduction

Nowadays, both �xed and mobile network operators still need access to rivals�networks in

order to terminate calls to their subscribers. This need for interconnection is one of the

most controversial issues of telecoms regulation. Network interconnection involves "two-

way" access agreements whereby network operators provide termination services to each

other since they operate at the same level of network hierarchy, i.e. they depend on each

other to supply the retail service.

With this relationship in mind, the question posed by national competition authorities

is: Can network operators undermine retail competition through access charges? The aim

of this paper is to answer this question in a model of dynamic competition. The fact is

that access charges have remained high in Europe, where the Caller Party Pays regime and

termination-based price discrimination are used. These high termination rates are for mobile-

to-mobile (MTM) and �xed-to-mobile (FTM) calls, and have become a serious concern in

most European countries because of their impact on the o¤-net prices.

There is no clear consensus within the academic literature on this policy concern, however.

As for termination-based price discrimination, Gans and King (2001), building on La¤ont,

Rey and Tirole (1998b), show that a (reciprocal) access charge below cost raises equilibrium

pro�ts. Intuitively, a below-cost access charge makes o¤-net calls cheaper than on-net calls,

so consumers prefer to join the smallest network, all else being equal. Therefore, they are less

attracted by lower �xed fees, and as a result network operators bid less aggressively for the

marginal customers. This result is somewhat inconsistent with the fact that regulators are

normally concerned that access charges are too high. In this sense, Armstrong and Wright

(2007) point out the existence of a constraint of "wholesale arbitrage" that explains why

mobile operator cannot maintain a high FTM access charge alongside a low MTM access

charge. The reason is that the �xed network could then "transit" its calls via another mobile

operator. The authors show that mobile operators prefer a uniform access charge for FTM
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and MTM tra¢ c that lies between the e¢ cient and the monopoly level.1

Access charges have decreased over the last years but mainly because of charge controls.

Since mobile operators prefer high access charges, it seems that regulation on call termination

will not disappear even in the long run.2 What about banning termination-based price

discrimination? Would it neutralize the ability of network operators to undermine retail

competition through wholesale agreements?

Some answers to these questions can be found in the seminal papers of Armstrong (1998),

La¤ont, Rey and Tirole (1998a) and Carter and Wright (1999). Assuming symmetric net-

works, reciprocal access charges and linear retail prices these papers show that networks can

collude in setting retail prices by using the negotiated access charge as a strategic variable.3

More surprisingly, La¤ont, Rey and Tirole (1998a) show that networks cannot use access

charges to increase pro�ts when they are allowed to compete in two-part tari¤s. Intuitively,

an increase in the access charge boosts the usage price and so makes it more pro�table for

networks to build market share. In the linear pricing case, networks cannot build market

share without incurring an access de�cit, however when competition is in two-part tari¤s

they can build market share by lowering their �xed fees while keeping usage prices constant.

Dessein (2003) introduces heterogeneity in volume demand, so two-part tari¤s can be used

for second-degree price discrimination. He shows that in most cases the networks�pro�t do

not depend on the (reciprocal) access charge they agree on, so there is no scope for collusion.4

This neutrality result has become the focus of much research;5 it depends crucially on

two assumptions: full participation and symmetry. More speci�cally, Poletti and Wright

1Cherdron (2006) and Gabriel and Vagstad (2007) analyze termination-based price discrimination when
consumers� calling patterns are biased towards their peer groups (calling clubs). Both papers �nd that
networks prefer above-cost MTM access charges.

2For instance, in UK (Spain) there are planned price caps from 2007 through to 2011 (2009), at which
date they will be reviewed again.

3The intuition for this result is the following: if a network lowers its retail price, then its subscribers will
make more calls, which, in turn, provokes an access de�cit provided that the access charge is above the cost.
Therefore, by agreeing to high access charges, networks reduce the incentive to undercut each other.

4Hahn (2004) models consumer type continuously but still obtains similar conclusions. De Bijl and
Peitz (2000, chpt. 7) allow for third-degree price discrimination, and �nd that equilibrium pro�ts are still
independent of access charges when the market is mature.

5Excellent surveys can be found in Armstrong (2002) and Vogelsang (2003).
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(2004) restore the collusive role of above-cost access charges by modifying Dessein�s model

and allowing customers�participation constraint to be binding in equilibrium. This paper

imposes that network operators wish to service all types of customers (high and low demand

customers); however, as the authors point out, if customers are su¢ ciently heterogenous,

networks may �nd it pro�table to exclude low demand customers from the market so as

to extract more pro�t from the high demand users. Therefore, this model may �t better

the �xed-line networks than the mobile networks, where one may expect that low demand

customers make use of the linear price or prepaid contract instead of the non-linear price

or postpaid contract. Carter and Wright (2003) allow asymmetric networks by providing

for brand loyalty and show that the incumbent strictly prefers the access charge to be set

at marginal cost of terminating a call. The reason is that the large network faces a higher

proportion of on-net calls, whereas the small network faces a higher proportion of o¤-net

calls; thus, above-cost access charges boost the average unit cost of the small network. Since

networks charge calls at the average unit cost, it follows that the large network will face a

net out�ow of calls and hence a de�cit in the wholesale market.6

One may thus conclude that charge controls are not needed when termination-based price

discrimination is banned: �rst, symmetric networks do not gain from high reciprocal access

charges, so network should not refuse to coordinate themselves on the socially optimal level,

which is pricing access at marginal cost; second, if networks are asymmetric, then a simple

policy seems to achieve the welfare maximizing outcome: leave the incumbent free to set the

access charge since it always prefer the access charge to be set at marginal cost of terminating

a call. Nevertheless, all these papers deal with static competition, while the dynamics of

competition in the telecommunications are evident.

The main aim of this paper is to analyze the impact of the access charges on the networks�

pro�t in a model of dynamic competition and check the robustness of the neutrality result

6Conversely, if the access charge is below marginal cost the large network will face a net in�ow of calls as
the small netwok will face a lower average unit cost for calls and hence set a lower call price. Quite obviously,
a net in�ow of calls alongside a below-cost access charge is not pro�table.
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in this more general setup. I extend the standard model of static competition in two-part

tari¤s to a two-period model. For this purpose, I introduce some assumptions regarding the

equilibrium concept and the existence of switching costs.

Subgame Perfect Equilibrium: De Bijl and Peitz (2000, 2002, 2004) also analyze dynamic

competition among network operators but assuming "myopic" networks or, in other words,

solving for the per-period pro�t maximizing equilibria. Starting from an asymmetric sit-

uation, they �nd a similar result to that of Carter and Wright (2003) in the short term,

and a result that is very close to pro�t neutrality in the long term. I will instead consider

non-myopic networks and solve for the subgame perfect equilibrium. Another di¤erence is

that De Bijl and Peitz make a numerical analysis, while the insights of this paper are drawn

from the properties of the model.7 Another related paper is Valletti and Cambini (2005),

here the authors extend the standard setting by introducing an investment stage, prior to

competition in two-part tari¤s, in which networks can invest to improve the quality of their

network. They show that networks favour above-cost access charges since this reduces the

incentive to invest and consequently raises networks�pro�t.8

Switching costs: The dynamic analysis would be useless if consumers did not face a cost

when switching from one operator to other. There is however much evidence suggesting that

switching costs are signi�cant. In a standard two-period model, typically switching costs

make demand more inelastic in the second period; since second-period pro�ts depend on the

customer base, switching costs may then lead to a more competitive behaviour in the initial

period (Klemperer, 1987).

Dynamic network competition under consumer switching costs raises several economic

issues for network operators and regulators: Are network operators able to undermine retail

competition through access charges? Which are the dynamic networks�pricing strategies?

7It is worth to remark, however, that they make numerical analyses of a wide range of interesting scenarios
as for instance the case of non-reciprocal access charges and the process of entry (De Bijl and Peitz, 2004.)

8Intuitively, if the quality of a network has the same impact on on- and o¤-net calls, then an increase in
own quality relative to the rival creates an access de�cit when the access charge is above cost.
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How are they a¤ected when the access charge departs away frommarginal cost? What are the

socially optimal access charges across periods? The main result of this paper is that retail

competition is softened when future reciprocal access charges depart from marginal cost.

More speci�cally, in equilibrium the total discounted pro�t is neutral with respect to the

�rst-period access charge but increases when the second-period access charge departs (in any

direction) from the marginal cost. This result holds both for naive and rational consumer

expectations. Moreover, there is a robust economic argument supporting this non-pro�t-

neutrality result: the model in the second period is similar to the standard static model,

thus the pro�t of the large network decreases when the access charge departs away from the

marginal cost; this in turn lowers the incentive to �ght for market share in the �rst period.

This result does not rely on asymmetric networks or partial consumer participation, instead

it says that networks are able to collude over access charges, even if they are symmetric and

there is full participation, as long as they are non-myopic and there is dynamic competition.

Moreover, we �nd that cost-based access charges maximize the social welfare, one may thus

conclude that there is scope for regulation in order to prevent potential anti-competitive

behaviours.

The rest of the article proceeds as follows. Section 2 describes the model of dynamic net-

work competition. Section 3 analyzes the second period. Section 4 characterizes the equi-

librium with naive consumer expectations, obtains and discusses the non-pro�t-neutrality

result, and derives the socially optimal access charges. Sections 5 and 6, look respectively

at the cases of general preferences and rational consumer expectations. Finally, Section 7

summarizes the main insights and concludes. All the proofs are given in the appendix.

2 The model

Many of the standard assumptions prevail (La¤ont, Rey and Tirole, 1998a). There are two

operators indexed by i and j; i 6= j = 1; 2: Each network operator has its own full coverage
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network and directly competes for consumers. Networks are interconnected, so a consumer

who subscribes to one network can call any other consumer on either network. Networks

are not allowed to price discriminate between calls that terminate on- and o¤-net. Thanks

to the assumptions of interconnection and non-termination-based price discrimination, there

are thus no network externalities.

For o¤-net calls, the originating network must pay an access charge a to the terminating

network. This access fee is reciprocal and is charged per unit of termination. Consumers

derive utility from making calls but not from receiving them. Furthermore, consumers make

calls according to a balanced calling pattern, in which the percentage of calls originating on

a network and completed on the same network is equal to the market share of this network.

As to the cost structure, symmetric costs are assumed for simplicity. Network operators

incur a marginal cost per call at the originating end and a marginal cost cT at the terminating

end of the call. The total cost is denoted by c: There is a �xed cost of f � 0 in serving a

customer, which re�ects the cost of connecting the customer�s home to the network and of

billing and servicing that customer.

As to the demand structure, the telephone consumption q(p) is Ck (with k � 2); bounded

and has bounded derivatives (q0 < 0 and q00 > 0):9 Furthermore, q(p) is the same for all

consumers; so, networks can do no better than o¤er a two-part tari¤ T i(q) = F i + piq; i.e.

each network charges a �xed fee F to each customer and a per-unit price for making calls p

(called the marginal price or usage fee).

The two networks are di¤erentiated à la Hotelling. A unit mass of consumers is uniformly

located on the segment [0; 1]; while the network operators are located at the two extremities

of the segment. Consumers�tastes for networks are thus represented by their position on the

line segment and taken into account through the transportation costs � : Let v(p) denote the

consumers�variable net surplus or indirect utility and w = v(p)� F the net surplus. Then,

given income y and the customer demand q; a consumer located at x and joining network i

9Throughout this paper the apostrophe symbol means the �rst derivative of the considered function. In
this case for instance q0 = dq=dp and q00 = d2q=(dp)2:
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has utility

y + v0 � � jx� xij+ wi;

where v0 represents a �xed surplus from being connected to either network (it is assumed

su¢ ciently large so that all consumers choose to be connected to a network), and � jx� xij

is the cost of being connected to the network located at xi 6= x:

I follow Klemperer (1987) in adding switching costs to the Hotelling model. In the

second period a consumer has a switching cost s > 0 of switching network. If s > �; then

at a symmetric equilibrium consumers always choose the same network; instead, I assume

throughout that s < �; so that at least some consumers switch. In addition, I make the

following two assumptions:

A.1. Preferences are independent across periods.

A.2. Consumers have naive expectations.

Assumption A1 re�ects an extreme case in which each consumer�s second-period prefer-

ences for the networks are independent of his �rst-period preferences, so consumers�pref-

erences may change over time. A2 imposes a strong condition on the consumer behaviour,

namely, consumers do not realize that network operators with higher market shares will

charge higher prices in the future. These two assumptions are not essential for the results,

but they do simplify the presentation. Sections 5 and 6 relax, respectively, assumptions A1

and A2 and show that they do not a¤ect the main result of this paper.

The timing of the game is as follows. Reciprocal access charges are set by a regulator

or negotiated between carriers at stage 0; a �exible regulation allows access charges to di¤er

over time. In the �rst and second stages, which are indexed by t 2 f1; 2g; network operators

compete in retail prices taking as given the �rst- and second-period access charge. Networks

have rational expectations and discount second-period revenues and costs by a factor �:

From now on and without any loss of generality assume that network 1 (respectively 2)

is located at the beginning (respectively at the end) of the segment [0; 1]: In the �rst period
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consumers have no ties to any particular network, then a consumer located at x = �1 is

indi¤erent between the two networks if and only if

w1t=1 � ��1 = w2t=1 � �(1� �1):

Therefore, i0s �rst-period market share is

�i1 =
1

2
+ �

�
wi1 � wj1

�
; (1)

where � � 1=2� is the index of substitutability between the two networks. At the beginning

of the second period there is a fraction �i1 of consumers initially attached to network i:

Of these and given assumptions A1 and A2, a consumer located at x 2 [0; 1] will remain

associated with network i if wi2 � �x � wj2 � �(1� x)� s: A consumer initially attached to

network j will instead switch to network i if wi2 � �x � s � wj2 � �(1 � x): Therefore, the

network i0s second-period market share is

�i2 = �i1

�
1

2
+ �

�
wi2 � wj2 + s

��
+ �j1

�
1

2
+ �

�
wi2 � wj2 � s

��
(2)

=
1

2
+ (2�i1 � 1)�s+ �

�
wi2 � wj2

�
:

In period t; network i0s pro�t is given by

�it = �it(p
i
t � c)q(pit) + �it(F

i
t � f) + �it�

j
tmt(q(p

j
t)� q(pit)); (3)

where mt � at � cT denotes the access mark-up. The �rst term represents the retail pro�t

originated by the customer usage. The second and third terms represent respectively the

pro�t from line rentals and the net interconnection revenue. Network i originates �itq(p
i
t)

calls and from each one of them it gains the margin pit � c: In addition, network i incurs a

�xed cost f for every customer subscribed to its network (�itf); although it receives from
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each of them its �xed fee (�itF
i
t ): Given the balanced calling pattern, a fraction �

j
t of the

�itq(p
i
t) calls goes to network j; in which case network i pays the reciprocal access charge at

but saves the marginal cost of terminating the call cT : Moreover, a fraction �it of the calls

originated in network j; �jtq(p
j
t); goes to network i; so it obtains from each one of them the

reciprocal access charge at but incurs the marginal cost cT of terminating the call.

3 The second period

In the �rst period networks choose prices, which results in pro�ts �i1 and �
j
1; and market

shares �i1 and �
j
1 (with �

i
1+�

j
1 = 1). Because switching costs exist, these market shares a¤ect

the networks�choice of second-period prices and their corresponding second-period pro�t. In

this section we thus analyze the second-period game, taking as given the �rst-period market

shares.

As the seminal work of La¤ont, Rey and Tirole (1998a) points out, it is analytically

convenient to view network competition as one in which the networks pick usage fees and

net surpluses rather than usage fees and �xed fees, since market shares are determined

directly by net surpluses. Therefore, networks maximize their pro�ts (3) with respect to pi2

and wi2; while taking p
j
2; w

j
2 and �

i
1 as given:

max
(pi2;w

i
2)
�i2(w

i
2; w

j
2) [(p

i
2 � c)q(pi2) + v(pi2)� wi2 � f ]

+�i2(w
i
2; w

j
2)(1� �i2(w

i
2; w

j
2))m2[q(p

j
2)� q(pi2)]

; (4)

where �i2 is given by (2). In equilibrium we have

pi2 = c+ �j2m2; (5)

wi2 = v(pi2)� f � �i2
�
+ (pi2 � c)q(pi2) + (�

i
2 � �j2)m2(q(p

i
2)� q(pj2)): (6)
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The equilibrium market shares satisfy (2), (5) and (6), that is,

�i2 =
1

2
+
�
2�i1 � 1

� �s
3
+
�

3

�
v(pi2)� v(pj2) +m2(�

j
2q(p

i
2)� �i2q(p

j
2))
�
; (7)

with �j2 = 1� �i2: Finally, substituting (5) and (6) into (4), we have at equilibrium

b�i2 = (�i2)
2

�
�
�
�i2
�2
m2(q(p

i
2)� q(pj2)): (8)

Together (5), (6), (7) and (8) characterize the equilibrium second-period prices, market

shares and pro�ts as functions of the second-period access mark-up m2; the �rst-period

market shares �i1 and the switching costs s:

The model in the second period is similar to the traditional static model in which the

symmetric equilibrium pro�ts are independent of the level of the access charge; indeed, in

any symmetric equilibrium �i2 = 1=4� whatever the access mark-up m2: The reason for this

result is that a second-period access charge above marginal cost boosts usage fees, so it

has a positive e¤ect on the revenue per customer; however, as a consequence of this e¤ect,

each network operator competes more aggressively for market share by lowering their �xed

fee. When there is full participation these two e¤ects cancel each other, and hence in any

symmetric equilibrium second-period pro�ts are not a¤ected by the level of m2:

Second-period pro�ts might depend on m1 through �i1; but in any symmetric equilibrium

�i1 = 1=2 whatever the �rst-period access mark-up, so equilibrium second-period pro�ts are

not a¤ected by its level. Next sections show that in the neighborhood of m2 = 0; the �rst-

period market share is a source of bene�t; although, the incentive to compete for it decreases

when departing away from cost-based access charges, which is the main insight of this paper.
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4 The �rst period

In the �rst period each network i chooses pi1 and F
i
1 to maximize its total discounted pro�t,

while taking j0s �rst-period usage fee and �xed fee as given. Network i0s total discounted

pro�t is

�i(pi1; p
j
1; w

i
1; w

j
1) = �i1(p

i
1; p

j
1; w

i
1; w

j
1) + �b�i2(m2; �

i
1(w

i
1; w

j
1)); (9)

where �i1 is given by (3) and b�i2; as a function of m2 and �i1; is determined by (5)-(8).

The following proposition establishes formally the conditions for the existence of a unique

equilibrium:

Proposition 1 (existence and uniqueness) If �s2=9� 2 < 1; then for small enough access

markups m1 and m2; the two-period duopoly model has at least one symmetric equilibrium.

This equilibrium is moreover the unique equilibrium if �s2=9� 2 < 1=2: In contrast, there is

never a cornered-market equilibrium.

Small enough access markups is a condition similar to the obtained in the static case (see

La¤ont, Rey and Tirole, 1998a.) The additional condition �s2=9� 2 < 1=2 is not too restrictive

since � is usually assumed lower to one and s < � by assumption. For the subsequent analysis

we shall assume

A.3. m1 and m2 are close enough to zero, so that a symmetric equilibrium exists, more-

over �s2=9� 2 < 1=2 holds.

Under A3 the two-period duopoly model has a unique symmetric equilibrium, which is

the focus of our analysis. Conditions (5)-(6)-(7) determine second-period market shares and

prices as functions of the second-period access mark-up and the �rst-period market share:

�i2(m2; �
i
1); p

i
2(m2; �

i
1) and w

i
2(m2; �

i
1): In equilibrium @�i=@pi1 = @�i1=@p

i
1 = 0: It follows

that pi1 = c + �j1m1 : networks choose their usage fees in the same way as they do in the

second period. Furthermore, in equilibrium (using @�i1=@w
i
1 = �)

0 = @�i=@wi1 = @�i1=@w
i
1 + ��@b�i2=@�i1: (10)
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Therefore, networks may choose lower or higher �rst-period net surpluses than those that

would maximize �rst-period pro�ts depending on the sign of @b�i2=@�i1: From the previous

section we have that pro�ts depend positively on the �rst-period market share if m2 = 0 :

(@b�i2=@�i1) > 0: Thus, in this case �rst-period �xed fees are lower than those that would

maximize �rst-period pro�ts (@�i1=@w
i
1 < 0) : in order to build a customer base, networks

compete more aggressively in the �rst period than they would do in the absence of switching

costs. For m2 6= 0 the analysis becomes more complex since the level of the second-period

access charge may or may not make it pro�table to build a customer base in the �rst period.

The �rst-period access charge may also a¤ect the �rst-period market share and pro�ts. In

summary, since market shares a¤ect the future, each network may compete more or less

aggressively for market share than it otherwise would do in the absence of switching costs.

Condition (10) can be rewritten as follows

0 =
@�i1
@wi1

�i1 � �i1 + �(�j1 � �i1)m1(q(p
j
1)� q(pi1)) + �

@b�i2
@�i1

(m2; �
i
1)
@�i1
@wi1

: (11)

where �i1 = [(p
i
1 � c)q(pi1) + v(pi1) � wi1 � f ] is the retail pro�t obtained by network i from

each subscriber. Since @�i1=@w
i
1 = �; in any symmetric equilibrium:

�i1 =
1

2�
� � (m2); (12)

where

 (m2) �
@b�i2
@�i1

(m2; 1=2):

Recall that b�i2(m2; 1=2) = 1=4�; so in any symmetric equilibrium the network i0s total

discounted pro�t is b�(m2) =
1 + �

4�
� �

2
 (m2): (13)

Notice that this pro�t does not depend on m1; but it can depend on m2 through  (m2): The

next proposition establishes formally this relationship.
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Proposition 2 Under A.1, A.2 and A.3, starting from m1 = m2 = 0; a small change in m1

has no impact on pro�ts, whereas any small increase or decrease in m2 softens competition

in the �rst period and increases total discounted pro�ts.

From the previous section we have that neither m1 nor m2 a¤ect the symmetric equilib-

rium second-period pro�t. A similar argument to the one that explains the (static or second-

period) pro�t neutrality result with respect to m2; explains also why symmetric �rst-period

pro�ts are neutral with respect tom1: As already noted, the equilibrium second-period pro�t

is increasing in the level of the �rst-period market share when m2 is close to zero (specif-

ically,  (0) = 2s=3 > 0): Thus, in the neighborhood of m2 = 0; networks compete more

aggressively in the �rst period than they would do in a market without switching costs.10

There is however a new insight:  0(0) = 0 and  00(0) = (2s�=9)q0(c) < 0; i.e. the equilibrium

total discounted pro�t is strictly convex in m2 at m2 = 0: Therefore, both a (small) increase

or decrease in m2 increases networks�equilibrium pro�ts. Since  00(0) < 0; the bene�t of

having a higher market share in the second period decreases when the second-period access

charge departs away from marginal cost, and so does the incentive to compete for market

share in the �rst period. Note however that the impact of m2 on the total discounted pro�t

depends on the size of sigma.

Figure 1 depicts this situation, where O = (1=2; z) and z � 0: The dashed lines represent

the equilibrium second-period pro�t when m2 = 0 and m2 is di¤erent from (but close enough

to) zero.11 Starting from a symmetric equilibrium, if network i slightly increases its �rst-

period market share then b�i2 will increase and network i would move from O to the point a:

However, if m2 6= 0 the bene�t of having a larger customer base will be lower, so network i

would move from the point a to the point b: An explanation for this result can be found in the

Proposition 1 of Carter and Wright (2003), which proves that the pro�t of the large network

decreases when the access charge is higher or lower than the marginal cost. Therefore, as

10Because of the concavity of the i0s pro�t function with respect to wit:
11It is easy to check that @b�i2(0; �i1)=@�i1 > 0 and @2b�i2(0; �i1)=(@�i1)2 > 0:
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Figure 1: The role of the second-period access mark-up.

higher or lower the second-period access charge is with respect to the marginal cost, lower

the second-period pro�t for the large network will be (though still higher than the pro�t of

the small network), which in turn softens the �rst-period competition for market share.

It is worth to note that if access charges are cost-based, then symmetric equilibrium

total discounted pro�ts are higher in the absence than in the presence of switching costs,

so networks are worse o¤ with switching costs. Networks compete aggressively for market

share in the �rst period, as it is valuable in the future, however they do not make any extra

pro�ts in the second period because in the symmetric equilibrium prices are the same as

if there were no switching costs. This result coincides with the one obtained in Klemperer

(1987) when all second-period consumers are either new or have independent preferences

across periods. However, here the di¤erence between both equilibrium pro�ts (without and

with switching costs) becomes closer as the second-period access mark-up departs away from

zero.

From above we may conclude that m1 = m2 = 0 does not maximize networks�total dis-

counted pro�ts. On the contrary, the next proposition states that cost-based access charges

locally maximize consumer surplus and social welfare, measured as the sum of producer and

consumer surplus minus transportation and switching costs. Formally,

15



Proposition 3 Under A.1, A.2 and A.3, any small departure from cost-based access charges

reduces the consumer surplus and the social welfare.

This proposition has clear policy implications. Since networks prefer future access charges

di¤erent from marginal costs, some kind of regulation may be needed to ensure that social

welfare is maximized. The next two sections show, respectively, that this result still holds

when there exist some consumers that have constant tastes across periods and when they

are not myopic.

5 General preferences across periods

In the model I have used so far, each consumer�s network preferences are independent over

time. This section, following Klemperer (1987), considers the general case where a fraction

� < 1 of second-period consumers are new in the market, and a fraction � > 0 and 1��� �

of �rst-period consumers have, respectively, independent and unchanged preferences across

periods.

Network i0s second-period market share is

�i2 = v

�
1

2
+ �(wi2 � wj2)

�
+ �

�
1

2
+ (2�i1 � 1)�s+ �(wi2 � wj2)

�
+ (1� �� v)�i1; (14)

provided that

s �
��(wi2 � ��i1)� (w

j
2 � ��j1)

�� : (15)

This last condition implies that none of the consumers that have unchanged tastes switch

of network in the second period.12 If (15) holds, the �rst-order conditions, @�i2=@p
i
2 =

12The tastes of the fraction (1 � � � �)�11 of network 10s consumers are uniformly distributed along the
line segment (0; �11); none of these consumers switch of network if w

1
2 � ��11 � w22 � ��21 � s: Also, none of

the consumers who joined network 2 in the �rst period and whose tastes are unchanged switch of network
if w12 � ��11 � w22 � ��21 � s: Hence the network i0s second-period market share is given by (14) only if���(wi2 � ��i1)� (wj2 � ��j1)��� � s:
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@�i2=@w
i
2 = 0; yield p

i
2 = c+ �j2m and

wi2 = v(pi2)� f � �i2
(�+ v)�

+ �j2m2q(p
i
2) + (�

i
2 � �j2)m2(q(p

i
2)� q(pj2)); (16)

where �i2 is now given by (14). Notice that for a given network j0s strategy (pj2; w
j
2 �

v(pj2)� F j2 ); network i
0s best response is

pi2 = epi2(wi2; wj2) � c+

�
v

�
1

2
+ �(wj2 � wi2)

�
+ �

�
1

2
+ (2�j1 � 1)�s+ �(wj2 � wi2)

�
+(1� �� v)�j1

�
m2:

Thus, for given (pj2; w
j
2); network i

0s pro�t, as a function of wi2; is e�i2(wi2) = �i2(w
i
2; w

j
2)[v(epi2(wi2; wj2))�

wi2�f+�
j
2(w

i
2; w

j
2)m2q(p

j
2)]: Moreover, for m2 close enough to zero: e�i002 ' �2�(�+v) < 0:13

However, for these �rst-order conditions to de�ne an equilibrium we still have to show that

no network operator has incentive to deviate from our candidate equilibrium by choosing

a strategy in which (15) does not hold. In this sense, notice that for � or � large enough,

any network i0s deviation so as to capture some of the rival network�s consumers that have

constant tastes cannot be a global best response provided that switching costs exist.14

Therefore, for �+ v large enough the equations pi2 = c+�j2m; (14) and (16) characterize

the equilibrium. It follows that in equilibrium the network i0s second-period pro�t is

b�i2 = (�i2)
2

(�+ v)�
� (�i2)2m2(q(p

i
2)� q(pj2)):

Let me now turn to the �rst period, in equilibrium, where @�i=@pi1 = @�i=@wi1 = 0; we have

pi1 = c + �j1m1 and 0 = @�i1=@w
i
1 + ��@b�i2=@�i1: As in the case of independent preferences

across periods, in which � = 1; this equilibrium exists for m1 and m2 close enough to zero

13e�i002 = �2�(�+v)+2�2(�+v)2m2(q(epi2)�q(pj2))��2(�+�)2(m2)
2�i2q

0(epi2); where q and q0 are bounded
functions.
14The reason is that any network i has to decrease its �xed fee to capture at least one additional consumer

from the fraction (1 � � � �)�j1 since s > 0: So, necessarily, wi2 > bwi2; where bwi2 denotes the equilibrium
second-period net surplus. Moreover, for a large enough � + v we can make �i2(w

i
2; bwj2) close enough to

�i2( bwi2; bwj2) (hence pi2(wi2; bwj2) ' pi2( bwi2; bwj2)) so that �i2(wi2; bwj2)� �i2( bwi2; bwj2) ' ��i2(wi2 � bwi2) < 0:
17



provided that (�=9)(s2=� 2) < 1:15 Hence, in any symmetric equilibrium

b�i(m2) =
1 + �

4�
� �

2
 (m2);

where

 (m2) �
@b�i2(m2; 1=2)

@�i1
=

�
1

(�+ v)�
+
(m2)

2

2
q0
�
c+

m2

2

��
'(m2);

and, using (14),16

'(m2) �
@�i2
@�i1

(m2; 1=2) =
2�s�+ (1� �� v)

3 + �(�+ v)(m2)2q0(c+m2=2)
:

Thus, '0(0) = 0 and '00(0) > 0: It follows therefore that  0(0) = 0 and  00(0) = [(2�s� +

(1 � � � v))=9]q0(c) < 0; and hence b�i0(0) = 0 and b�i00(0) > 0: So, even though some

consumers are new or have constant tastes across periods both a (small) increase or decrease

in the second-period access charge still increases the equilibrium total discounted pro�t.

The reason for this result is that as long as v < 1; networks �nd it optimal to compete for

market share in the �rst period. Moreover, the fact that in the second period there are new

consumers and consumers that have unchanged preferences does not change the result that

the large network prefers cost-based access charges: an access charge above/below cost still

boosts/decreases the average unit cost of the small network and so do its usage fee. Therefore,

any (small) departure from cost-based access charges still softens �rst-period competition.

Finally, notice that network operators are worse o¤ in the presence of switching costs than

in the absence of them when access charges are cost-based. However, again, the di¤erence

between equilibrium pro�ts with and without switching costs becomes closer as m2 departs

away from zero.

15For given rival�s prices, network i0s total discounted pro�t, as a function of wi1; is e�i(wi1) =
�i1[v(epi1(wi1; wj1)) � wi1 � f + �j1m1q(p

j
1)] + �b�i2(m2; �

i
1): For m1 and m2 close enough to zero we may writee�i00 ' �2� + �(8s2�3=9)(�2=(� + v)); so e�i00 < 0 if (8=9)(s2=�2) < (� + v)=�2; but (� + v)=�2 > 1 for any

�; v 2 (0; 1):
16From the �rst-order condition we have @pi2=@�

i
1 = �m2

�
@�i2=@�

i
1

�
; thus, in any symmetric equilibrium

@wi2=@�
i
1 = �'(m2)=((�+ v)�)� ((m2)

2=2)q0(c+m2=2)'(m2); where '(m2) � (@�i2=@�i1)(m2; 1=2):
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6 Rational consumer expectations

So far I have assumed that consumers cannot anticipate the networks� second-period be-

haviour. In this section I analyze the case in which consumers have rational expectations;

formally, I make the following assumption,

A.2�. Consumers have rational expectations.

Consumers with rational expectations recognize that if a network decreases its �rst-

period �xed fee, it will build market share, which, given the existence of switching costs,

it can exploit in the second period by increasing its second-period �xed fee. If a consumer

located at x subscribes to network i in period one, he will remain attached to that network

in the second period i¤wi2 � x� � wj2 � �(1� x)� s: The second-period total net surplus of

a consumer located at x is then

Ewi =

Z �(�+ bwi2� bwj2+s)
0

bwi2 � �xdx+

Z 1

�(�+ bwi2� bwj2+s) bwj2 � �(1� x)� sdx;

where bwi2 is the network i0s equilibrium second-period net surplus as a function of m2 and

�i1: The marginal consumer is thus given by

0 = (wi1 � �x)� (wj1 � �(1� x)) + �
�
Ewi � Ewj

�
= (wi1 � wj1) + � � 2�x+ 2�s�

� bwi2(m2; x)� bwj2(m2; x)
�
:

So,

�i1 =
1

2
+ �(wi1 � wj1) + 2s�

2�
� bwi2(m2; �

i
1)� bwj2(m2; �

i
1)
�
: (17)

Let me de�ne

h(m2; �
i
1) �

�
@�i1
@wi1

��1
;

h then measures the inverse of the sensitivity of the �rst-period market share to the �rst-

19



period prices. From (17) we may obtain h so that

h(m2; �
i
1) =

1

�

�
1� 2s�2�@ 4 bw

@�i1
(m2; �

i
1)

�
; (18)

where 4 bw(m2; �
i
1) � bwi2(m2; �

i
1) � bwj2(m2; �

i
1): When consumers have naive expectations,

h = 1=�: Here, instead h depends on m2 and �i1 : consumers recognize that the intensity of

competition in the second period depends on the second-period access charge and the �rst-

period market shares. In the �rst period, network i maximizes (9) with respect to pi1 and

wi1; which in any symmetric equilibrium yields p
i
1 = c+m1=2 and 0 = (@�i1=@w

i
1)�

i
1� 1=2+

�(@b�i2=@�i1)(@�i1=@wi1); where @�i1=@wi1 can be obtained from (18). Using these �rst-order

conditions we obtain in a symmetric equilibrium (the existence of which I show for m1 and

m2 close enough to zero in the proof of next proposition):

F1(m1;m2) = f +
h(m2; 1=2)

2
� m1

2
q(c+m1=2)� � (m2); (19)

where recall that  (m2) � (@b�i2=@�i1)(m2; 1=2): Obviously, in the second period symmetric

equilibrium pro�ts are the same as with naive expectations, that is, 1=4�: Using (19), this

gives b�(m2) =
1

2

�
h(m2; 1=2)

2
� � (m2)

�
+

�

4�
: (20)

When consumers have rational expectations the symmetric equilibrium total discounted

pro�t thus depends on m2 through h and  ; whereas in the case of naive expectations it

depends only on m2 through  : The next proposition establishes formally the relationship

between the total discounted pro�t and m2 when consumers have rational expectations.

Proposition 4 Under A.1, A.2�and A.3, starting from m1 = m2 = 0; a small change in m1

has no impact on pro�ts, whereas any small increase or decrease in m2 softens competition

in the �rst period and increases total pro�ts, although to a lower extent than when consumers

have naive expectations.
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In the proof of this last proposition I show that h(0; 1=2) > 1=�; this result stems from the

fact that when consumers have rational expectations they realize that networks with higher

market shares will charge higher prices in the future, which in turn makes the demand

less elastic. Furthermore, I obtain that @h(0; 1=2)=@m2 = 0 and @2h(0; 1=2)=(@m2)
2 =

(8=9)s2�2�q0(c) < 0; which make both the equilibrium total discounted pro�t and �rst-period

�xed fee strictly convex in m2 at m1 = m2 = 0 since s < �:

In addition, using  (0) = 2s=3 and h(0; 1=2) = 1=� + 8s2��=3 we may write b�(0) =
(1 + �)=4� + (s�=3)(s=� � 1); then, as in the case of naive consumer expectations, networks

are worse o¤ with switching costs than without them, and the di¤erence between both

equilibrium pro�ts becomes smaller as the second-period access charge departs away from the

marginal cost level. It remains to note that in the neighborhoodm1 = m2 = 0; the symmetric

equilibrium total discounted pro�t is higher in the rational expectations case than in the naive

expectations case; indeed, form1 = m2 = 0 we have that �RE��NE = (2=3)s2��: Therefore,

network operators prefer rational consumer expectations to naive consumer expectations,

although Proposition 4 gives us the following result

b�00RE = �1� s

�

� b�00NE;
which says that in equilibrium any departure from cost-based access charges has a lower

impact on the total discounted pro�t when consumers have rational expectations than when

they have naive expectations.

7 Conclusion

This paper has shown that when there is dynamic competition and network operators are

non-myopic, then they can use access charges to lessen competition, even in symmetric mar-

kets in which participation is complete. In contrast to what previous research suggests,

there is scope for regulation: while cost-based access charges maximize total welfare, net-
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works�equilibrium pro�ts increase when future access charges depart away from marginal

costs.

Other insights are derived. Network operators are worse o¤ in the presence than in

the absence of switching costs, and even more so when consumers have naive expectations.

However, I also show that any departure from cost-based access charges in future periods

attenuates this impact of switching costs on competition.

8 APPENDIX

Some preliminary lemmas will be useful.

Lemma 1. In equilibrium

'(m2) �
@�i2
@�i1

(m2; 1=2) =
2�s

3 + �(m2)2q0(c+m2=2)
:

In addition, '0(0) = 0 and '00(0) = �4s�2q0(c)=9 > 0:

Proof. In the second period, equilibrium prices and market shares, wi2(m2; �
i
1); p

i
2(m2; �

i
1)

and �i2(m2; �
i
1); are determined by (2) and the �rst-order conditions (5)-(6), that is:

wi2 = v(pi2)� f � �i2
�
+ (pi2 � c)q(pi2) + (�

i
2 � �j2)m2(q(p

i
2)� q(pj2)); (21)

pi2 = c+ �j2m2; (22)

�i2 =
1

2
+ (2�i1 � 1)�s+ �(wi2 � wj2): (23)

Di¤erentiating (21)-(23) with respect to �i1 = 1� �j1 yields in a symmetric equilibrium

@wi2
@�i1

= �'(m2)

�
+
m2

2
q0
�
c+

m2

2

� @pi2
@�i1

;

@pi2
@�i1

= �m2'(m2);
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'(m2) = 2�s+ �

 
@wi2
@�i1

� @wj2
@�i1

!
;

where '(m2) � (@�i2=@�
i
1)(m2; 1=2): Using @w

j
2=@�

i
1 = �@wj2=@�

j
1 = �@wi2=@�i1 we thus

have that

'(m2) = 2�s+ 2�

�
� 1
�
� (m2)

2

2
q0
�
c+

m2

2

��
'(m2):

It follows that

'(m2) =
2�s

3 + �(m2)2q0 (c+m2=2)
:

By di¤erentiating this last expression with respect to m2 we may write

'0(m2) =
�2s� [2�m2q

0(c+m2=2) + �(m2)
2q00(c+m2=2)=2]

[3 + �(m2)2q0(c+m2=2)]
2 : (24)

Then '0(0) = 0 and

'00(0) = �4s�
2q0(c)

9
> 0:

Lemma 2. Under A.1, A.2�and A.3,

h(0; 1=2) =
1

�
+
8s2��

3
:

In addition, @h(0; 1=2)=@m2 = 0 and @2h(0; 1=2)=(@m2)
2 = (8=9)s2�2�q0(c) < 0:

Proof. By de�nition 4 bw(m2; �
i
1) = bwi2(m2; �

i
1)� bwj2(m2; �

i
1): Using (21) we may write

� bw(m2; �
i
1) = v(pi2)� f � �i2

�
+ (pi2 � c)q(pi2) + (�

i
2 � �j2)m2(q(p

i
2)� q(pj2)) (25)

�
 
v(pj2)� f � �j2

�
+ (pj2 � c)q(pj2) + (�

j
2 � �i2)m2(q(p

j
2)� q(pi2)

!
;

where �i2; p
i
2 and wi2 are functions of m2 and �i1 and are determined by (21)-(23). By
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di¤erentiating (25) with respect to �i1 we may write

@ 4 bw
@�i1

(m2; 1=2) = �
�
2

�
+ (m2)

2q0
�
c+

m2

2

��
'(m2): (26)

Then, from (18), (26) and Lemma 1 we have that

h(m2; 1=2) =
1

�
� 2s��

�
@ 4 bw
@�i1

(m2; 1=2)

�
=

1

�
+ �

�
(2s�)2

3 + �(m2)2q0(c+m2=2)

��
2

�
+ (m2)

2q0(c+m2=2)

�
=

1

�
+ 4s2��

�
2 + �(m2)

2q0(c+m2=2)

3 + �(m2)2q0(c+m2=2)

�
:

De�ne j(m2) = u(m2)=v(m2); where u(m2) = 2 + �(m2)
2q0(c + m2=2) and v(m2) = 3 +

�(m2)
2q0(c+m2=2): It follows that

u0(m2) = v0(m2) = 2�(m2)q
0(c+m2=2) + �

(m2)
2

2
q00(c+m2=2);

and

u00(m2) = v00(m2) = 2�q
0(c+m2=2) + 2�(m2)q

00(c+m2=2) + �
(m2)

2

4
q000(c+m2=2);

so that u0(0) = v0(0) = 0 and u00(0) = v00(0) = 2�q0(c):Hence, @h(0; 1=2)=@m2 = (4s
2��)j0(0) =

(4s2��)(u0(0)v(0)� u(0)v0(0))=v(0)2 = 0: In addition,

j00(m2) =
(u00v � uv00)v2 � (u0v � uv0)2vv0

v4
:

Thus, j00(0) = 2�q0(c)((v(0) � u(0))=v(0)2) = 2�q0(c)(1=9): Finally, @2h(0; 1=2)=(@m2)
2 =

(4s2��)j00(0) = (8=9)s2�2�q0(c):

Proof of Proposition 1. Let me �rst show that no cornered-market equilibrium exists

in this two-period model. Consider �rst the second period; if network i corners the market,
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then pi2 = c and �i2 = F i2 � f � 0; whereas �j2 = 0: However, network j could charge

pj2 = c and F j2 = F i2 + �; where � > 0: So, wj2 = v(c) � F j2 = v(c) � F i2 � � = wi2 � �; thus,

�j2 = (1=2) + (2�
j
1 � 1)�s� �� = (1=2)[1� (s=�)] + 2�j1�s� �=2� : Then, for � small enough

we have �j2 > 0 (even if �
j
1 = 0) since 1�s=� > 0: Hence, �

j
2 = �j2[F

j
2 �f ] = �j2[F

i
2+ ��f ] �

�j2� > 0; a contradiction. Consider now the �rst period and again suppose that network

i corners the market. Then, pi1 = c; and �i1 = F i1 � f � 0; whereas �j1 = 0: Moreover,b�i = F i1� f + �b�i2(m2; 1) and b�jND = �b�j2(m2; 0) (where ND means no deviation.) However,

if network j charged pj1 = c and F j1 = F i1 + "; then for " > 0 small enough the network j0s

�rst-period pro�t would be �j1 ' (F
j
1 � f)=2 � "=2 > 0; whereas its total discounted pro�t

would be b�jD ' F j1 � f

2
+ �b�j2(m2; 1=2);

where D means deviation. Therefore,

b�jD � b�jND ' F j1 � f

2
+ �

�b�j2(m2; 1=2)� b�j2(m2; 0)
�
:

From above we have that (F j1�f)=2 � "=2 > 0 and, clearly, form2 small enough b�j2(m2; 1=2)�b�j2(m2; 0) > 0: Thus, b�jD � b�jND > 0; a contradiction.
Let me now study the existence and uniqueness of the (shared-market) equilibrium. The

second period is similar to the static case but taking into account the presence of a customer

base. Nonetheless, we can still use the proof given in the Appendix B of La¤ont, Rey and

Tirole (1998a) to show the existence and uniqueness of the second-period equilibrium of our

model for m2 close enough to zero: given network j0s strategy (pj2; w
j
2); network i

0s best

response entails pi2(w
i
2; w

j
2) = c + �j2(w

i
2; w

j
2)m2; thus, for given (p

j
2; w

j
2); network i chooses

wi2 to maximize its second-period pro�t

=
�
i

2(w
i
2) = �i2(w

i
2; w

j
2)
�
v(c+ �j2(w

i
2; w

j
2)m2)� wi2 � f + �j2(w

i
2; w

j
2)m2q(p

j
2)
�
;
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it follows that for m2 close to zero d2
=
�
i

2=(dw
i
2)
2 ' �2� < 0: Consider now the �rst-period;

given network j0s strategy (pj1; w
j
1); network i

0s best response again entails pi1(w
i
1; w

j
1) =

c+ �j1(w
i
1; w

j
1)m1; now network i chooses wi1 so as to maximize its total discounted pro�t:

=

�
i

(wi1) = �i1(w
i
1; w

j
1)
�
v(c+ �j1(w

i
1; w

j
1)m1)� wi1 � f + �j1(w

i
1; w

j
1)m1q(p

j
1)
�
+�b�i2(m2; �

i
1(w

i
1; w

j
1)):

(27)

First- and second-order derivatives of b�i2(m2; �
i
1(w

i
1; w

j
1)) are

@b�i2
@wi1

=

�
2�i2

�
1

�
�m2

�
q(pi2)� q(pj2)

��
� (�i2)2m2

@

@�i2

�
q(pi2)� q(pj2)

�� @�i2
@�i1

(m2; �
i
1)�;

@2b�i2
(@wi1)

2
=

�
2

�
1

�
�m2

�
q(pi2)� q(pj2)

��
� 2�i2m2

@

@�i2

�
q(pi2)� q(pj2)

�
�(�i2)2m2

@2

(@�i2)
2

�
q(pi2)� q(pj2)

���@�i2
@�i1

(m2; �
i
1)

�2
�2

+

�
2�i2

�
1

�
�m2

�
q(pi2)� q(pj2)

��
� (�i2)2m2

@

@�i2

�
q(pi2)� q(pj2)

�� @2�i2
(@�i1)

2
(m2; �

i
1)�

2:

Moreover, from (7) we have

@�i2
@�i1

=
2�s

3
+
�

3
(m2)

2

"
�j2q

0(c+ �j2m2)
@�j2
@�i1

� �i2q
0(c+ �i2m2)

@�i2
@�i1

#
:

By solving this last couple of equations for @�i2=@�
i
1 and @�

j
2=@�

j
1 we obtain

@�i2
@�i1

(m2; �
i
1) =

�
1 + �j

1 + �j�i

��
2�s

3
� 2�

2s

9

�j

1 + �j

�
;

where �i = (�=3)(m2)
2�i2q

0(c + �i2m2): Thus, for m2 close to zero we may write @�i2=@�
i
1 '

2�s=3 (recall that q0 is bounded.) Moreover, notice that for m2 close to zero we have that

@((1 + �j)=(1 + �j�i))=@�i1 ' 0 and @(�j=(1 + �j))=@�i1 ' 0; so @2�i2=(@�
i
1)
2 ' 0 and

hence @2b�i2=(@wi1)2 ' 8�3s2=9: Therefore, for m1 and m2 close enough to zero we may write
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@2
=

�
i

=(@wi1)
2 ' �2�+ �8s2�3=9: It follows that network i0s total discounted pro�t is strictly

concave in wi1 for m1 and m2 close enough to zero provided that (�=9)(s2=� 2) < 1:

Let me now study the uniqueness of the equilibrium. To that end, we can partially follow

the proof given in La¤ont, Rey and Tirole (1998a, appendix B) for the uniqueness of the

equilibrium in the static-symmetric game. Notice that in any (shared-market) equilibrium

equations pit = c + �jtmt always hold. By replacing these equations into the �rst-order

conditions with respect to wit we may reduce the set of �rst-order conditions to a pair of

equations for each period t = 1; 2 :

@�i2
@wi2

(wi2; w
j
2) = �[(pi2�c)q(pi2)+v(pi2)�wi2�f ]��i2+(1�2�i2)�m2(q(p

j
2)�q(pi2)) = 0; (28)

and

@�i

@wi1
(wi1; w

j
1) = �[(pi1 � c)q(pi1) + v(pi1)� wi1 � f ]� �i1 (29)

+(1� 2�i1)�m1(q(p
j
1)� q(pi1)) + �

@b�i2
@wi1

(m2; �
i
1(w

i
1; w

j
1));

where recall that pit = c + �jtmt; and �i1 and �
i
2 are, respectively, given by (1) and (2) as

functions of net surpluses. (28) and (29) de�ne "pseudo reaction functions" wi2 = ewi2(wj2)
and wi1 = ewi1(wj1); their slopes are given by

d ewit
dwjt

= �(@�
i
t=@w

j
t ) + �m[(@�it=@p

i
t)� (@�it=@p

j
t)]

(@�it=@w
i
t) + �m[(@�it=@p

j
t)� (@�it=@pit)]

= �(@�
i
t=@w

j
t ) + �2m2[�itq

0(pit)� (�
j
t � �it)q

0(pjt)]

(@�it=@w
i
t) + �2m2[(�jt � �it)q

0(pjt)� �itq
0(pit)]

;

where �i1 � @�i=@wi1 and �
i
2 � @�i2=@w

i
2: For m2 close enough to zero we have @�

i
2=@w

i
2 '

�2� and @�i2=@w
j
2 ' � (since q and q0 are bounded), so we may write d ewi2=dwj2 ' 1=2 < 1;

by which the second-period equilibrium is unique. Moreover, for m1 and m2 close enough to

zero we have @�i1=@w
i
1 ' �2�+� and @�i1=@w

j
1 ' ��� (since q and q0 are bounded), where
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� � �8s2�3=9 > 0; thus we may write d ewi1=dwj1 ' � � (�� + �)=(�2� + �): Notice that

0 < � < 1 provided that � < �; or equivalently, provided that �s2=(9� 2) < 1=2; in which

case the �rst-period equilibrium is unique.

Proof of Proposition 2. Rewrite the equilibrium second-period pro�t as

b�i2(m2; �
i
1) = (�

i
2)
2

�
1

�
�m2(q(p

i
2)� q(pj2))

�
; (30)

where �i2 and p
i
2 are determined as a function of m2 and �i1 by (21)-(23). By di¤erentiating

(30) with respect to �i1 we may write

@b�i2
@�i1

(m2; �
i
1) = [2�i2

�
1

�
�m2

�
q(pi2)� q(pj2)

��
+(�i2)

2(m2)
2(q0(pi2) + q0(pj2))]

@�i2
@�i1

(m2; �
i
1):

Therefore, in a symmetric equilibrium

 (m2) =

�
1

�
+
(m2)

2

2
q0 (c+m2=2)

�
'(m2);

where  (m2) � @b�i2(m2; 1=2)=@�
i
1 and '(m2) � @b�i2(m2; 1=2)=@�

i
1: By Lemma 1 we have

that '(0) = 2s�=3; '0(0) = 0 and '00(0) = (4s�2=9)(�q0(c)): Thus,  0(0) = (1=�)('0(0)) = 0

and

 00(0) =
2s�

9
q0(c):

From (13) we may write b�0(0) = �(�=2) 0(0) = 0 and
b�00(0) = ��

2
 00(0)

=
�s�

9
(�q0(c)) > 0:

Then, starting from m1 = m2 = 0; any small increase/decrease in m2 increases total dis-
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counted pro�ts. Moreover, from (12), at a symmetric equilibrium @F i1(0; 0)=@m2 = �� 0(0)

and @2F i1(0; 0)=(@m2)
2 = �� 00(0): Furthermore, in such an equilibrium  0(0) = 0 and

 00(0) < 0; hence, @F i1(0; 0)=@m2 = 0 and @2F i1(0; 0)=(@m2)
2 > 0: So, starting from m1 =

m2 = 0; any small increase/decrease in m2 softens competition in the �rst period.

Proof of Proposition 3. In any symmetric equilibrium, total transportation costs and

switching costs are independent of the access mark-up level since �it = 1=2 8t; i: Fixed fees

neither have any impact on total welfare because of the full-participation assumption; thus,

any small departure from cost-based access charges reduces total welfare since it is maximal

when usage prices are cost-based. From above we have that networks increase their pro�ts

when the second-period access charge departs away from marginal cost, as a consequence

the consumers� surplus must decrease. The �rst-period access charge does not have any

impact on second period surpluses because in equilibrium the market share is always one-

half. In a symmetric equilibrium networks�pro�ts are neutral with respect to the �rst-period

access charge; however, notice that the total welfare decreases with any small departure from

cost-based access charges, so the consumer surplus must also decrease.

Proof of Proposition 4. The analysis of the second period is the same under naive

and rational consumer expectations, so we can make use of Proposition 1 to show that a

unique (shared-market) equilibrium exists for m2 close enough to zero. In the �rst period,

for given (pj1; w
j
1); network i chooses w

i
1 to maximize (27), where �

i
1 is now given by (17).

Di¤erentiating this last expression yields

@�i1
@wi1

=
�

1� 2s�2�@ 4 bw(m2; �i1)
;

where 4 bw(m2; �
i
1) � bwi2(m2; �

i
1) � bwj2(m2; �

i
1) and bwi2 is characterized by (5), (6) and (7).

Di¤erentiating 4 bw with respect to �i1 gives after some computations
@ 4 bw
@�i1

(m2; �
i
1) = �

�
2

�
+ (m2)

2(�j2q
0(pi2) + �i2q

0(pj2)

�
@�i2
@�i1

:
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Moreover,

@24 bw
(@�i1)

2
= �(m2)

2
�
q0(pj2)� q0(pi2) +m2

�
�i2q

00(pj2)� �j2q
00(pi2)

�� @�i2
@�i1

�
�
2

�
+ (m2)

2
�
�j2q

0(pi2) + �i2q
0(pj2)

�� @2�i2
(@�i1)

2
:

From the proof of proposition 1 we have that for m2 close to zero @�i2=@�
i
1 ' 2�s=3 and

@2�i2=(@�
i
1)
2 ' 0: It follows that for m2 close enough to zero @ 4 bw=@�i1 ' �4s=3 and

@24 bw=(@�i1)2 ' 0; and so @�i1=@wi1 ' �=(1 + (8=3)s2�2�) and @2�i1=(@w
i
1)
2 ' 0: Therefore,

for m1 and m2 close enough to zero we may write

@2
=

�
i

(@wi1)
2
' �2@�

i
1

@wi1
+ �

@2b�i2
(@�i1)

2

�
@�i1
@wi1

�2
'

�
�2 + �

�
8�s2

9

�
�

1 + �(8=3)s2�2

�
�

1 + �(8=3)s2�2
< 0;

since 2 > (�(8=9)�s2)(�=(1 + �(8=3)s2�2)) if 18=8 > (��2s2)=(1 + �(8=3)s2�2 holds, which is

true since (��2s2)=(1+�(8=3)s2�2 < 1 < 18=8: From Lemma 2 it is easy to characterize both

network i0s �rst-period �xed fee and total discounted pro�t. First, note that from (19)-(20)

we have b�0(0) = @F1(0; 0)=@m2 = 0: Furthermore, from the proof of Proposition 2 we have

 00(0) = (2s�=9)q0(c); thus by Lemma 2 we may write

b�00(0) = 1

2

@2F i1
(@m2)2

(0; 0) =
�s

18�

�
1� s

�

�
(�q0(c));

where I have used � � 1=2� : Therefore, in equilibrium both the total discounted pro�t

and the �rst-period �xed fee are strictly convex in m2 at m1 = m2 = 0 since s < � by

assumption. Then, b�00RE(0) = (�s�=9)(1 � s=�)(�q0(c)); and from Proposition 2 we haveb�00NE(0) = (�s�=9)(�q0(c)); it follows that
b�00RE(0) = �1� s

�

� b�00NE(0):
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